
F2I COP

~OF 4

1- u-APRASE:
INSTRUMENTATION SOFTWARE 36&

FOR THE
INTEL iPSO HYPERCUBE

THESIS

Mark Albert Kahl

ELECTE
4~~~ 0NVRS MAR1980

-. ~~~DEPARTMENT OF THE AIR FORCE AE--I.

AIR FORCE INSTITUTE OF TECHNOLOGY:.

Wright-Patterson Air Force Base, Ohio

4mI d - .ks dv ml8 3 29 0 1

AFIT/GCS/ENG/88D-11

PRASE:
INSTRUMENTATION SOFTWARE

FOR THE
INTEL iPSC HYPERCUBE

THESIS

Mark Albert Kahl
Captain, USAF

AFIT/GCS/ENG/88D-11 DTIC
ELL C;TZ

0 1989

Approved for public release; distribution unlimited

1[

AFIT/GCS/ENG/88D-1 1

PRASE:

INSTRUMENTATION SOFTWARE

FOR THE

INTEL iPSO HYPERCUBE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University ___________

In Partial Fulfillment of the Accession --For
INTIS ORA&I

Requirements for the Degree of DTIC-TAB
Ullannuned

Master of Science (Computer Systems) Justificatio

Distributiton/

Mark Albert Kahl, B.S. Avilability Codes

Capai, UAFDist Special

December, 1988w -I

0 Approved for public release; distribution unlim-ited

Acknowledgments

There are several "Thank You's" I want to make, but one stands out in im-

portance. My Lord and Savior Jesus Christ is loving and great beyond compare. He

has taken me through this effort for which I am thankful. He deserves my highest

praise and devotion. Thank you Jesus! In fact, I tried to find an applicable name

for this thesis that would be a reminder of Him and at the same time fit the effort.

I came close. He truly is wonderful.

I would also like to say thanks to my wife Jan. She has endured a lot here at

AFIT while helping me get through it all. Her contributions to this thesis include

editing suggestions, beautiful handwriting in an appendix, and tons of support. She

has encouraged me, been my fan, and taken a lot of my jobs at home so that 1 would

have more time to give to school. Thank you. I love you.

My children Tim, Lauri, Beth, and Melissa have all been great. They have

been patient with the time required by school. Thank you all for your love. I am

looking forward to spending lots more time with you all now that we are done.

My parents also deserve a "Thank You." Not only did they provide encourage-

ment; they also provided my home computer which gave me much more time with

my family. Thanks!

Next I would like to thank Dr. Hartrum. I think I ended up with one of

the best advisors in all of AFIT. He was patient, calming when crises hit, and a

great director of this effort. So much of this work reflects his ideas and thoughts.

He deserves much credit. Thanks for always being willing to answer that "one last

question." You were great!!!!

A special thanks also needs to go to Aiva Couch at Tufts University. He

willingly supported us in providing Seecube and was excited about the results that

ii

we got. He was encouraging and very willing to cooperate. I much appreciate your

professionalism and cooperation. You contributed a lot to this effort.

Finally, I would like to thank some of the people here at AFIT who were willing

to discuss this project with me. Some contributed by providing ideas that were

incorporated in the thesis. Lots of input was provided by several individuals. First,

my other two committee members; Cpt Davis and Capt Donlan. Thanks. Bruce

Clay, and Rick Norris were very helpful. Their technical advice was excellent. Others

include Capt Bailor, Cpt Shaw, Capt Hodges, Joe Glaeser, Capt Hippenmeyer, Cpt

Lebano, and Capt Bridges. Thanks to you all.

Specifically, Capt Donlan, Cpt Davis, Capt Bailor, Capt Hodges, Bruce Clay,

Rick Norris, Joe Glaeser, and Cpt Shaw were willing to 'interview' with me. Some

of their inputs have been included in- this thesis.

I know this has been a lengthy acknowledgements. However, I wanted to make

sure that these individuals were named. An effort like this does not normally happen

in a vacuum. Rather, it is the culmination of several peoples thoughts and ideas.

Mark Albert Kahl

0

,oiii

Table of Contents

Page

Acknowledgments ii

Table of Contents iv

List of Figures viii

Abstract ix

1. Overview 1-1

1.1 Background 1-1

1.2 Problem Statement and Solution 1-2

1.3 Summary of Literature/Local User Review 1-2

1.4 Scope 1-4

1.5 Approach/Methodology 1-4

1.6 Materials and Equipment 1-5

1.7 Summary 1-6

II. Requirements Determination 2-1

2.1 Introduction 2-1

2.2 Which Performance Measures? 2-1

2.2.1 Performance Indexes [6:11-15] 2-1

2.2.2 Seecube Measurements [21 2-3

2.2.3 Monit Measurements [9:163-174] 2-3

2.2.4 Local User Input 2-4

2.3 Communicating Results 2-5

2.3.1 Gantt Charts and Kiviat Graphs [6:192-202] 2-5

iv

Page

2.3.2 Seecube Data Presentation 2-6

2.3.3 Monit Data Presentation. 2-10

2.3.4 Three-Dimensional Line Plots. 2-11

2.4 Summary. 2-12

II.System Analysis and Design 3-1

3.1 Introduction 3-1

3.2 Alternatives 3-1

3.2.1 Operating System Instrumentation 3-1

3.2.2 Seecube Upgrade. 3-1

3.2.3 Autonomous New Effort 3-2

3.2.4 Some New, Some Old 3-2

3.3 Choices. 3-2

3.4 System Design 3-3

3.4.1 Using PRASE - An Overview 3-4

3.4.2 Major Design Issues. 3-6

3.5 Lower Level Design 3-12

3.5.1 Data Collector 3-13

3.5.2 Fortran Preprocessor 3-15

3.5.3 C Preprocessor 3-16

3.5.4 PRASE to Seecube Translator. 3-17

3.6 Items Supported 3-19

3.6.1 CPU Utilization. 3-19

3.6.2 Turnaround Time 3-19

3.6.3 Seecube Measurements 3-19

3.6.4 Monit Measurements 3-19

3.6.5 Local User Measurements of Interest 3-20

3.7 Summary. 3-20

v

Page

IV. Testing 4-1

4.1 Equivalence Classes and Boundary Values 4-2

4.1.1 For the Configuration 4-2

4.1.2 User Include File Inputs 4-8

4.2 System Level Testing 4-9

4.3 Evaluation of Test Results 4-12

4.4 Summary 4-16

V. Conclusions and Recommendations 5-1

5.1 Conclusions 5-1

5.2 Recommendations 5-1

5.3 Summary 5-4

Appendix A. User's Manual A-1

Appendix B. Structure Charts and Pseudocode B-1

Appendix C. System Configuration Guide C-1

Appendix D. Volume II Pointer for Test Cases and Results D-1

Appendix E. Seecube File Formats F-I

Appendix F. PRASE File Formats F-1

F.1 Intermediate Translation File F-2

Appendix G. File Translation Discussion G-1

Appendix H. Configuration File Example H-I

Appendix I. Summary Paper I-1

Appendix J. Volume II Pointer for Code J-1

vi

Page

Bibliography. BIB-i

Vita.. VITA-i

vii

List of Figures

Figure Page

2.1. Utilization profile (Gantt chart) 2-6

2.2. Example of a utilization profile and a Kiviat graph for the same

workload 2-7

2.3. The "bf 3-cubes in Space" Representation of a 5-d Hypercube Using

the Cube Display. 2-9

2.4. The "Colored Square" Representation of a 32 Node Complete

Graph Using the Clump Display. 2-9

2.5. The Queue Display of Input Activity 2-10

2.6. Air Pollutants Graphs (no title found in source) 2-11

2.7. A color-coded plot with 16 million density points of relative bright-

ness observed for the Whirlpool Nebula reveals two distinct galaxies.
Courtesy Los Alamos National Laboratory 2-12

3.1. PRASE and its Connection with Seecube 3-5

3.2. Data Collection using a Background Process 3-7

0

VIII

AFIT/GCS/ENG/88D-11

A bstract

PRASE (Parallel Resource Analysis Software Environment), developed at the

Air Force Institute of Technology to support local users, consists of a set of sub-

routines and programs that aid a user in monitoring parallel processing software

targeted for an Intel iPSC Hypercube. PRASE was in many ways patterned after

Seecube, an effort by Alva Couch and others at Tufts University in Massachusetts.

Like Seecube, instrumentation code rr ist be embedded in a user's source code to

facilitate data collection. After data has been collected, a translator may be used

to translate PRASE data into Seecube format. Once translated, existing Seecube

software can be utilized to produce several kinds of graphical displays on a Sun

workstation.

Seecube, however, is not required to be able to use PRASE. PRASE allows a

user to gather data on several processes per node and gives the user the capability

to collect information on variables specific to his program. This allows application-

specific instrumentation. Preprocessors for both C and Fortran automatically embed

necessary subroutine calls using a user defined configuration file. The data collection

subroutines are written in C and can be called by both C and Fortran. Data collected

during program execution can be held in Hypercube memory and written to disk at

the end of a run, or dumped periodically to disk during a run which may aid in

debugging. The resulting data files can then be translated to Seecube format or

used as input to other data analysis and display programs. The two preprocessors,

as well as the translator were implemented in Ada.

ix

PRASE:

INSTRUMENTATION SOFTWARE

FOR THE

INTEL iPSC HYPERCUBE

I. Overview

1. 1 Background

Single processor computers are rapidly becoming a thing of the past. Their re-

placements are multiple processor systems, running in parallel, which may yield

greater overall speed and efficiency. Mainframe computers sometimes use dual

CPUs and almost always contain separate specialized processors to interface to in-

put/output devices such as disk drives. Even some smaller home computers employ

specialized chips (processors) to handle functions such as input/output or graphics.

There is great potential, in a parallel environment, to complete several times

the amount of work of a single processor in the same amount of time. Just as

a factory might hire more workers to increase production, computers can utilize

multiple processors to better handle their workloads. In fact, when chip makers

reach speed limitations, the only alternative for faster service may be to do more

work in parallel.

The potential speedup offered by a parallel environment can be appealing to a

user. A programmer, however, may not share the user's enthusiasm when faced with

events happening at the same time and often in an unpredictable fashion. If parallel

processors worked autonomously, the problem might not be so complex. Normally,

though, they interact with each other, causing much greater complexity.

1-1

One way to attack the potential confusion is to use a parallel processing mon-

itor/analyzer (PPM). A PPM should attempt to gather meaningful metrics (CPU

utilization, message queue lengths, etc.) in a parallel processing environment and

present the results in an orderly fashion. Without this type of tool, the programmer

may face greater difficulty in understanding the parallel aspects of his software.

1.2 Problem Statement and Solution

A PPM, within the AFIT user community, has potential to enhance the pro-

grammer's ability to produce quality software in shorter periods of time. The goal of

this thesis, then, was to provide a parallel processing monitor/analyzer that would

collect data on an Intel iPSC Hypercube parallel processing machine, and graphically

display the data collection results in a meaningful way on a SUN 3 workstation.

This thesis effort has resulted in the initial implementation of the Parallel

Resource Analysis Software Environment or PRASE. Although the current imple-

mentation does not exist as a true Software Environment, this author forsees the

utility of directing PRASE towards that end. Thus, the initial name includes some

future goals for the system as a whole. The capabilities of PRASE are discussed

throughout this thesis, but specifically in the System Analysis and Design chapter,

Testing chapter, and the appendix containing the User's Manual. Compatibility with

Seecube [2] is being utilized to meet the graphical display goal of this effort.

1.3 Summary of Literature/Local User Review

Three main sources were drawn upon to gather information pertaining to

PPMs. First, a review of the literature brought out others' work and ideas re-

lating to monitoring an, parallel processing. Second, interviews with AFIT users

were conducted to gather local opinions and thoughts. Finally, seveial ideas came

from meetings with AFIT research faculty. Using results from these three sources,

* several questions were considered.

1-2

0
1. What performance measures are of interest?

2. What data should be monitored and how can it be collected?

3. How can the data be displayed so that it is easily understood?

4. How can a PPM be implemented to provide ease of use?

Systems such as Seecube [2] and Monit [9] have ttempted to answer these

questions. Seecube records message passing events on a Hypercube architecture to

derive its performance measures of interest [2:1-2] while Monit gathers data pertain-

ing to process events [9:165]. One part of the Seecube system, the Resolver, takes

independently gathered data from each processor, and weaves it into a single file of

data. This data can then be graphically displayed to a user on a Sun 3 workstation.

A user may choose from many different display options. Monit also allows a user to

manipulate gathered data using graphical displays [9]. Both systems are attempting

0 to provide meaningful feedback to the programmers of parallel devices.

The book Measurement and Tuning of Computer Systems discusses several in-

teresting ideas pertaining both to choice of measurements as well as to presentation

of the results [6]. Even though these ideas are not given in a parallel context, many

still apply to the PPM concept. The book lists measurements such as CPU uti-

lization and memory utilization "from an earlier source" [6:141. Other ideas dealing

with the display of gathered data were also presented. Among the display ideas were

Kiviat Graphs, which were discussed based on earlier articles [6:195-202].

Local users highlighted certain ideas as well as contributing new ones.1 Some of

their thoughts include time waiting for a message receive to complete, and correlation

of message sends and receives to determine if messages were lost. Other thoughts

were emphasized, such as finding message sizes, and reporting on queue lengths.

Additionally, ease of use was considered as an important factor.

0 1See the Acknowledgements of this thesis for a list of the contributing individuals.

1-3

1.4 Scope

There were two items that were not a part of this thesis effort. First, no

consideration was given to automated assessment of the collected data. This thesis

was not meant to become a system that automatically evaluates the "goodness" of

the data collected. Second, the PPM does not dynamically reconfigure the parallel

environment. Monitored data is not used to tune the system dynamically. The goal

was to provide a usable PPM to the AFIT user community.

1.5 Approach/Methodology

The initial phase began with the literature/user review. Many discussions with

faculty as well as interviews with local users complemented what was found in the

literature pertaining to PPMs. During the review, time was spent gaining experience

working with both the Hypercubes and Sun 3 workstations. This time was used to

become familiar with pertinent equipment and software. Throughout the project,

prototyping efforts (small programs) were used to test new ideas.

The next two phases overlapped. Phase two was the design phase while phase

three was the coding and testing phase. During phase two (and into phase three),

several major decisions were made. Some of these decisions follow.

1. The Seecube software would be utilized in some capacity. (See the User's

Manual for availability)

2. AFIT's own data collector 2 'would be written (as opposed to updating the

collector that came with Seecube or instrumenting the operating system).

3. Preprocessors would be provided to free the user from having to place most in-

strumentation code into programs by hand. Both C and Fortran preprocessors

would be provided to support the two main Hypercube languages used here at

AFIT.

2The term data collector has been picked up from the literature discussing Seecube[2:1].

1-4

4. Data collecting would not be in Seecube format. However, to maintain compat-

ibility with Seecube, a translator would be provided to translate data collected

with PRASE into the appropriate Seecube format to allow use of Seecube

graphic display routines.

The third phase included writing and testing the PRASE software. Overlap

with phase two occurred, in that several design decisions were made in tandem with

coding and testing. As coding would progress, certain design considerations would

become pertinent, at which time they were dealt with. Thus, several design issues

were accomplished during coding and testing.

During the previous phase and into this phase, language choices were made.

The data collector was written predominantly in C. Ada was chosen to implement

the data translator, the Fortran preprocessor, and the C preprocessor.

Testing was incremental. As code modules were completed, they were tested.

Thus, module testing was integrated throughout the coding phase. Finally, a full

system test was conducted to check out the system as a whole. This test was done

using a local user's code with the philosophy that actual data provides the best test

case.
3

1.6 Materials and Equipment

Two pieces of equipment are required to use PRASE. First, Intel iPSC/1 Hy-

percubes must be used to gather performance data in a parallel processing environ-

ment. This data can then be displayed using the Seecube display software which

requires a color Sun I workstation.

3This type of testing philosophy was gained by working three years with a man I came to respect
greatly - Ancel Peckham.

1-5

1.7 Summary

The goal of this thesis was to provide a parallel processing monitor to the AFIT

user community. This was accomplished by providing new data collection routines

and preprocessors, as well as a translation routine that supports the utilization of

Seecube's graphical displays. AFIT Hypercube users now have another tool in their

toolbox to aid in their parallel programming tasks.

1-6

II. Requirements Determination

S.1 Introduction

There are two questions, of those previously listed, that will be addressed here.

The first is, "What performance measures are of interest?" Before a monitor can be

effectively evaluated or designed, some sort of measurement guidelines must be set

forth. With a standard in hand, design and implementation can take place.

Once data is collected, the second question becomes pertinent. It is, "How

can the data be displayed so that it is easily understood?" Using the information

collected in a literature review, coupled with the thoughts and ideas gathered in user

interviews, the two questions of interest will be addressed.

2.2 Which Performance Measures?

What data or measurement statistics should a parallel processing monitor col-

lect (or calculate from the collected data)? Whatever is collected, the ultimate goal

of providing the user with helpful information should be kept in mind. Data should

be selected for collection so that certain performance indicators can be quantified.

2.2.1 Performance Indexes [6:11-15] Several "Performance Indexes (sic)"

were included by Ferrari, Serazzi, and Zeigner from an earlier source [6:14]. Some

of these indices included CPU utilization, channel utilization, multiprogramming

level, and programs executed per hour. Other indices suggested by the authors were

turnaround time and throughput [6:11]. A short discussion of each of these indices

follow.

CPU utilization was defined as the "Ratio between total CPU busy time and

total system operating time" [6:14]. In a parallel processing environment, this ratio

could be an especially effective indicator when used to compare one processor to

another. The index could provide a first indication that only a few processors are

2-1

doing most of the work. Channel utilization was defined as the "Ratio between total

channel busy time and total system operating time" [6:14]. This too, can provide an

initial indication of an overworked area of the system.

Multiprogramming level is the "Mean number of simultaneously active (i.e.,

memory resident) programs" [6:14]. This could be used to compare the amount of

processes running on different CPUs. High CPU utilization levels might be explained

in the light shed by this index.

An important point should be made with the next index. Programs executed

per hour [6:14] may be another measure from which a user could extract meaning.

It would be very easy, however, to mistakenly say that the more programs per hour

processed, the busier a CPU is. If a CPU's programs require only small amounts of

resources, the processor with the most programs may indeed be the least worked.

Great care must be taken in the interpretation of the gathered measures. Although

interpretation is mainly a user function, a software monitor should not present data

in a misleading way.

The definition for Turnaround time was given as "the time interval between

the instant a program is submitted to a batch-processing system and the instant its

execution ends" [6:11]. A use for this index might be the comparison of different

program runs. A code modification may have increased, or decreased a program's

"Turnaround time."

Finally, "Throughput" was "informally defined as the amount of work per-

formed by a system in a given unit of time" [6:11]. This is another measure that can

be used to compare processor performances within a parallel processing system.

2-2

2.2.2 Seecube Measurements [2] As explained by Couch and others, "Seecube

is a development tool for parallel programming which uses postmortem records of

local events from each processor to reconstruct the global state of the computer at

any time during a computation" [2:1]. The Data Collector portion of the Seecube

software tool obtains the raw event data.

The Seecube software intercepts send and receive message calls in a parallel

environment where message passing is the means of communication between proces-

sors. An event is logged just prior to a send or receive call, as well as just after the

call is complete [2:1-2]. Several data items are kept for an event such as, "the time of

occurrence, a unique sequence number for the event, the identifying number of the

processor sent to or received from, and the message type specified in the call" [2:2].

A receive event also logs the sender's sequence number to allow "Cross-referencing"

of events [2:2].

Although message passing events are very important, they do not tell the whole

story. Specifically, indexes such as throughput and memory utilization cannot be

extracted from just capturing message events. However, whether these other indexes

can be gathered in certain parallel environments is an important question. It may

be that message passing events are the only easily gathered events within the system

that Seecube runs on.

2.2.3 Monit Measurements [9:163-174] Early in its development, the Monit

system dealt with gathering change of state data. Large amounts of data were

produced. Kerola and Schwetman stated that "This tool proved to be a useful

debugging aid, but it severely distorted the performance of the program because of

the computing required to format the output lines" [9:165]. The developers moved

on to a new design. This design used "a second form of data gathering, based

on creating a file of time-stamped events" [9:165]. One goal in this change was to

"minimize the resources consumed by this logging activity" [9:165].

2-3

The designers were "initially" interested with extracting data that would help

them find out "where PPL processes were spending their time" [9:165]. (PPL is the

name of a "parallel programming language" [9:1641) They "defined events corre-

sponding to assigning and unassigning processes to worker tasks and to processes

entering and leaving queues associated with the synchronization and interprocess

communication facilities of PPL" [9:165]. Unlike Seecube, Monit appears to center

more on gathering data pertaining to processes rather than messages.

2.2-.4 Local User Input Discussions were held with local users resulting in a

list of several items of interest.' Some of the self-explanatory items were message

size, amounts of messages (sent, received, handled), number of messages waiting

at a given time, queue lengths (average and maximum), waiting times, memory

utilization, CPU idle time, and CPU utilization.

Several other ideas were presented. Some of these are enumerated below.

1. Check to see if the message arrived. How many messages were sent that didn't

arrive at their destinations? [8]

2. Correlate message types. This could include statistics for each message type

(lengths, numbers, etc.). [il]

3. Follow a message. Show the path of a message as it flows through a parallel

system. [11]

4. Allow a user marker 2 facility. A user could mark a point in a monitor trace

to identify what might be happening at the time of interest. This idea can be

extended to allow a user to write values or text to a monitor trace for later

analysis. [5]

1 See the Acknowledgements of this thesis for a list of the contributing individuals.
2The term marker or mark was also found in the Seecube literature pertaining to something

similar to the idea presented here.

2-4

0
5. Provide waiting time statistics for message passing utilities. For example, how

long did a program wait from the time a receive and wait was issued to the

time the receive completed? (51

6. Provide load balancing information. [1]

7. Provide speedup information. [1

8. Determine the communication compute ratio. [1]

2.3 Communicating Results

Effectively communicating results encompasses more than merely choosing the

best graphs, charts, or tabulation methods to display data collection results [6:175].

Display techniques may also be important in aiding a user's understanding. Ferrari

and others state that "the most important problem is not so much that of deter-

mining the number and type of the graphs to be produced, but that of how to

group the various quantities in the tables and diagrams" [6:175]. Ways of displaying

information will be discussed in the next four sections.

2.3.1 Gantt Charts and Kiviat Graphs [6:192-202] In the literature, exam-

ples of Gantt charts, Kiviat graphs, line graphs, histograms, bar graphs, and data

tables were found [6:174-203]. Gantt charts and Kiviat graphs will be discussed in

detail. Figures 2.1 and 2.2 have been copied from the book Measurement and Tuning

of Computer Systems [6].

"Utilization Profiles," a form of Gantt chart, "represent simultaneously in a

single diagram the most significant variables of a system's activity" [6:192]. As

displayed in Figure 2.1, these profiles provide a means by which events that overlap

can be shown. As discussed by Ferrari and others, Figure 2.1 shows, "a system ...

that had a CPU activity overlapped with that of at least one channel 22 percent of

the total time" [6:192].

2-5

Memurement interval

0 10 20 30 40 50 60 70 80 90 100

CPU busy - 47%
Ch. 3 busY 4%

Ch. 2 busy , - 30%

Figure 2.1. Utilization profile (Gantt chart). [6:192]

More generally even then "Utilization Profiles," Gantt charts or some form of

time line could be used very effectively to demonstrate time ordering of events.

Ferrari, Serazzi, and Zeigner stated the following about Kiviat graphs:

Kiviat suggested that several variables could be reported on semiaxes
irradiating from a point, called a pole, and that the points corresponding
to their values (according to predetermined scales) could be connected
by straight-line segments, thereby obtaining a polygon, called a Kiviat
graph. A Kiviat graph can be drawn when a circle, whose center is the
pole, and three or more semiaxes from the pole are given. The intersec-
tion of the circle with a semiaxis corresponds to the maximum value of
the variable being displayed on that semiaxis. The number of semiaxes is
arbitrary a.nd generally selected according to completeness requirements
for the data represented; ... [6:195]

Figure 2.2 shows both a Kiviat graph and a corresponding Gantt chart for the

same data.

Both Kiviat graphs and Gantt charts provide a designer graphical means of

representing data pertaining to a parallel processing system. Either or both of these

may be possible display options for a PPM.

2.3.2 Seecube Data Presentation The Sequencer portion of the Seecube soft-

ware is responsible for preparing and presenting the collected data to the user [2:2-5].

2-6

CPU busy

0 2040 6080 1W

CPUbun- I41414 50

c NNu H In hne buyv J jT j j j j 10%
C P n l c a n l b s M 1 2 % C P U a nd C h a n n el 1 b u y

(a) channel busy

(b)

Figure 2.2. Example of a utilization profile and a Kiviat graph for the same work-
load conditions. [6:196]

This is done by dealing with states. The author's working definition of a state was,

"the value of any performance parameter of the hypercube which is constant between

events and can be inferred using only the event trace" [2:21. The hypercube is the

parallel processing architecture on which the Seecube software collects data. The

authors said that they "...chose to reconstruct states rather than directly displaying

events because of the problems of graphically representing instantaneous events on

dynamic displays." They went on to say that, "As each state by definition always

has a duration, states are ideal for use on time-varying displays" [2:3].

The Sequencer allows the user to choose the "global time to display" [2:3]. It

also allows the user to move forward and backward in time. Couch and others say

that "The real power of the Sequencer, though, lies in its ability to manage and

juxtapose several different displays of the same states on one graphics screen" [2:3].

Another facet of the Sequencer is the way in which states are displayed. The authors

said that "To display these states, we decided upon an equally simple convention:

each parameter we compute is represented as a shape on a graphics screen, and the

2-7

value or state of that parameter is represented as the color of that shape" [2:3].

They also explained what colors could represent. They said that "The color of a

processor symbol can correspond to the processor's internal state (sending, receiving,

computing, or idle), to the number of messages which are currently in process of being

routed through that processor on the way to their destinations, or to the total size

of all messages being routed" [2:4]. The color or highlighting idea seems useful. It

could be used to draw a user's attention to an area that is much different than the

average.

Seecube is able to present several different kinds of displays pertaining to the

data collected. We will discuss three of these displays briefly. First, the Seecube

Sequencer provides a "Cube Display" which represents all the nodes within the

Hypercube and their associated communications channels [3:14-22]. By manipulating

certain parameters on this display panel, one can examine the data in different

ways. This display attempts to show the total message activity within the system by

considering a message to be active on all communication channels from originator to

destination. This means that if two intermediate nodes 4.nd their associated channels

are used to transmit a message, this display w;ill present the activity. [3] An example

of this display can be seen in the Figure 2.3.

Another seemingly useful display is the "Clump" display. Whereas the cube

display attempts to show total message activity, the clump display aims at display-

ing originator to destination activity [3:22]. A user is presented with a grid that

represents point to point communications. Each individual node can be represented,

or nodes can be "clumped" together to show message traffic from one group of nodes

to another [3:22]. An example of this type of display is provided in Figure 2.4.

0
2-8

laterest state

m.Ee,3 2% dindo.Igz 0

reete 8 bitsgggrt 6 123 4

U L
................. . is

Figure 2.3. The "3-cubes in Space" Representation of a 5-d Hypercube Using
the Cube Display. 13:15]

adT TIT,~Calee 'e ft i~Io

65elr cite7". aceps etIna8nser! .:
:,.,. of 1u0*9010 eloop "me: a.

- "ede: 31, dinewatts I Ct,., Roe, 2
we"5 list- S-91

* 4 a 12 16 20 24 z#

a*:mesa :8990..: 111 uuu.*
* usaugum nuUileuUUUUUo
ow* : fi *m.uummuuuHuaUUMMOUa Saa
a3 1** 60 -1 HHHHHHHHHHauauuuuu I

ROO sggguaguuummomU nmg~mUfouem~ang ~a..*.awu*
3211U seengenUUUUUUUUU3UU

*.uuuu.uuuU~MMa*UEUSE
3 *.umenonsusuuUUUum.U aU

* Figure 2.4. The "Colored Square" Representation of a 32 Node Complete Graph
Using the Clump Display. [3:23]

2-9

----- ---- --- --- --- --- --- --- --- --1-

diueuelen: 5 nude: 32
first nude: I men quees site: 3OtS*
co se emns

Figure 2.5. The Queue Display of Input Activity. [3:32]

A third useful display is the queue display. Here, queues of messages at each

node can be represented. A user can watch how queue sizes grow both in numbers

of messages and size of messages. This display might highlight a backlog problem

that was previously undetected [3:30-33]. Figure 2.5 is an example of this type of

display.

Seecube provides a tailorable environment which allows the user to pick and

choose items of interest. More than one copy of the displays discussed can be rep-

resented at once [3:14]. For example, a user might wish to view two queue displays;

one showing output queues and one displaying input queues [3].

2.3.3 Monit Data Presentation According to Kerola and Schwetman, a user

of Monit "can specify the interval of interest by the zoom parameter and the display

resolution by the step size parameter." The user "can also change the widths of

bar charts by modifying the display accuracy parameter" [9:166]. Monit mainly

displays results using "a columnar bar chart, consisting of many horizontal lines"

2-10

Figure 2.6. Air Pollutants Graphs (no title found in source). [13:42]

0 [9:166]. In reference to the bar charts, the authors say that "The length of each

line in a column corresponds to the average value of the displayed item over the

time interval determined by the current step size." Monit also provides a table of

"conventional statistical data (mean queue lengths, response times, etc.)" [9:166].

The authors state that when "too many similar object" are needed to be displayed,
Monit can group them to "display only the maximum, minimum, or the average of

the associated values in the group" [9:166].

[.3.4 Three-Dimensional Line Plots Early in this thesis effort, the idea of a

3-D line plot was considered. The plots would be used in a time-varying mode. One

axis could represent time in selected increments. A second axis would represent the

process where the data was gathered. The third (and final) axis would represent

the measurement of interest. With this type of graph, areas of concern or at least

areas that are significantly different should beconte obvious. Figures 2.6 and 2.7 were

0 subsequently found in the literature.

2-11

Figure 2.7. A color-coded plot with 16 million density points of relative bright-
ness observed for the Whirlpool Nebula reveals two distinct galaxies.
Courtesy Los Alamos National Laboratory. [7:10]

Figure 2.6 was originally taken from the Los Angeles Times July 22, 1979 issue.

The graph was apparently based on work done by Gregory J. McRae, California

Institute of Technology.

Figure 2.7 was printed in the book referenced courtesy of Los Alamos National

Laboratory. Although not evident from this black and white rendition, Figure 2.7 is

color coded to enhance the change in height on the graph.

2.4 Summary

This review has concentrated on two issues: first, what to measure; and sec-

ond, how to present the data once measured. Seecube and Monit provide examples

pertaining to both of these areas.

2-12

III. System Analysis and Design

3.1 Introduction

There were several directions this project could have taken. The next two

sections will discuss these alternatives and the choices made. Section 3.4 will ad-

dress the overall system design and certain major design considerations, including

PRASE's relationship to Seecube. The fifth section of this chapter will explain more

detailed design issues pertaining to some parts of the system. Finally, Section 3.6

will briefly discuss some of the ideas from Chapter Two that have been implemented.

3.2 Alternatives

As mentioned previously, several courses of action presented viable alternatives.

Prior to addressing final decisions, a short discussion of these alternatives is in order.

Four possible directions will be presented.

3.2.1 Operating System Instrumentation AFIT owns a source license for the

node operating system running on the iPSC/1 Hypercube. Thus, hooks and monitor-

ing subroutines could have been placed directly into the node operating system. On

the positive side, this would have allowed near total transparency for the user as well

as the ability to measure some parameters not otherwise available. On the negative

side, once the operating system was upgraded, any modifications would have become

obsolete. Another problem concerns the difficulty of trying to change possibly very

complex code. Finally, portability would be limited to other sites owning a source

license.

3. 2.2 Seecube Upgrade The Seecube code, along with documentation, was ob-

tained from Tufts University in Massachusetts.1 Since the source code was available,

'See the User's Manual for details pertaining to obtaining a copy of Seecube.

3-1

0
modifications could have been made to include enhanced capabilities. A positive

aspect of this option was that Seecube was an existing system that already provided

some sophisticated capabilities. The negative aspects began with the fact that the

Data Collector (subroutines that facilitate data gathering) had not been updated for

the current version of the Intel operating system. This would have meant trying to

understand and modify another's code. Also, any copyrights for Seecube would have

prevented the work from being solely under AFIT's jurisdiction.

3.2.3 Autonomous New Effort A third alternative was to go completely away

from anything current, and begin again. A positive aspect, at least for this author,

meant not having to understand and modify another's code. Also, the project would

be AFIT's, providing any freedom coupled with single ownership. The negative

aspect to this was that no previous coding efforts would be utilized.

3.2.4 Some New, Some Old This alternative dealt with starting a new effort

but maintaining compatibility with Seecube. The positive side of this alternative

includes sole ownership, as well as reusing some of a previous effort. This option

also provides the opportunity to start afresh in the design and coding effort. On

the negative side, some software would be redone. Also, to maintain compatibility,

either the same data formats would have to be used or a translator would have to

be provided.

3.3 Choices

At some point a decision had to be made. Each of the listed alternatives

had some merit, with really none of the alternatives being unacceptable. Thus, the

decision was made to start a new effort but maintain compatibility with Seecube.

By going this way, there was flexibility in the way the system could be implemented.

This also relieved the burden of understanding and updating another's code. The

Government would have sole ownership and any flexibility desired in dealing with

3-2

the final product. New capabilities and ways of dealing with certain issues could be

handled without the burden of molding those capabilities into someone else's design.

Certainly, the Seecube software could have been modified to support any new

data requirements. The display software could also have been enhanced to sup-

port this new data. However, the freedom to start afresh (as opposed to chang-

ing/updating another's code), was a major factor, if not the major factor in this

decision.

A new Data Collector would be written and a translator provided to translate

the data into Seecube format. Thus, data collected could be different than what

Seecube collected as long as certain items were provided to support the translation

process. The main purpose for maintaining compatibility was to utilize the display

software provided by Seecube. By collecting new and possibly different data, new

and autonomous display software could also be developed.

Going with Seecube meant staying in the realm of event detection as opposed

to sampling. An event detection monitor collects data upon a specific occurrence of

some event. [12:22] The alternative was to sample data as opposed to collect data

on specific events. "A sampling monitor is similar to an event driven monitor but it

is activated by an interval timer, collects data about the system for a set period of

time and then is deactivated by a timer." [12:22]

Preprocessors would be provided to relieve the user of much of the burden of

instrumenting his own code. These programs (one for Fortran and one for C) would

accept, as input, code that compiles (no syntax errors) on the Hypercube. The

output would be code with instrumentation software added. This would decouple

the user from some of the details needed to use the new system.

3.4 System Design

It should be noted that Seecube provided an excellent springboard for this

project. Several ideas came directly from the Seecube effort. For example, the

3-3

separate subroutines to collect data are very much like those found in Seecube. The

data collected also greatly resembles the data collected by Seecube. However, they

are not the same. The PRASE data formats, synchronization methods, and certain

other items are different.

The overall design of the system incorporates the use of Seecube in concert with

the new software. Figure 3.1 shows how the PRASE code fits together as well as how

the connection is made to the Seecube software. Prior to listing major design issues,

a review of how the system is used may help to put the design into perspective.

3.4.1 Using PRASE - An Overview The user must first take compilable code

and run it through a preprocessor. Most language constructs2 in Ryan-McFarland

Fortran are supported by PRASE. This allows the user to be mostly freed from the

burden of understanding what must be added to his code to use PRASE. The C

language is also supported by a separate preprocessor. One 'special' comment must

be manually inserted in a C program prior to preprocessing.

A configuration file is used by both preprocessors as well as the translator to

set the context in which the programs will run. Such information as which nodes are

running, what process ids are being used, and what types of information to gather is

included in this file. The user must prepare this information using a standard text

editor to use the PRASE system.

Data may be gathered pertaining to more than one process per node. However,

if the end result is to use the Seecube displays, only one process per node is allowed.

This is because the available version of Seecube limits the user to one process per

node.

Once the user's program has been converted, it is ready to compile. An include

file for PRASE must be updated, and a personal copy of the subroutines must be

2Not all language constructs are supported. The user should refer to the User's Manual for
details.

3-4

P

PHASE

User [o New Collect Data New
Preprocess oe ..

Code Code Data Files Displays

Translate

Human File

--------------------------------------- ----------------------------- S

Seecube

Interlace Graphically
Resolve Files Display

a I

Figure 3.1. PRASE and its Connection with Seecube

3-5

moved into the user's local directory. The user can then tailor his own copy of

PRASE to fit his requirements. The user should then update his makefile, and

compile the new code in preparation for running on the cube nodes. It should be

noted at this point that only node programs are instrumented. Message sends and

receives in reference to the host are recorded; however, the corresponding activity

within the host program is not monitored because data collection facilities for host

programs do not currently exist.

Once the routine is ready to load, cube operation can begin. A collection

program must be run in the background on the host to accept the data as it is

dumped from each node process. Once the data is accepted and dumped to file, it

is then ready for translation and analysis. See Figure 3.2.

The data collected can be manipulated directly by an analysis program or

translated for use in the Seecube environment. As can be seen from Figure 3.1,

the data is translated into a format that is accepted by the Seecube Resolver. The

Seecube Sequencer can then be used to graphically review the collected data.

3.4.2 Major Design Issues Various issues had to be dealt with in the design

of the PRASE system. The following list embodies several of these issues including

a short discussion of each.

1. Collection Routines Implementation - The data collection routines were im-

plemented in C. These routines gather data pertaining to activity within the

Hypercube. Normally, a time prior to an action is gathered, a time after the

action is gathered, and then the pertinent data within the call is collected into

one record and stored in memory until a dump is required.

Instead of implementing another set of instrumentation subroutines in Fortran,

the C routines were called directly from Fortran. This has a potentially serious

implication. No longer are calls being made to the Intel iPSC Fortran node

routines. Instead, the Intel iPSO C routines are being called indirectly. Calling

3-6

310 Host Hypercube

I IUser s

Host ,0.

Data Files

00

*0
00

0

0

PRASE

Collector 0

Data Files

Figure 3.2. Data Collection using a Background Process

3-7

different routines may mean that performance is different when instrumenting

as opposed to when no instrumentation is included. However, whenever addi-

tional code is used to gather data, performance is altered. Because of the time

saved by not having to implement a set of instrumentation routines in Fortran,

the risk was considered acceptable.

2. Configuration File - This approach was chosen as the method by which the user

could specify certain information to the PRASE system. Information such as

which nodes are active, what process id numbers are running on certain nodes,

what items to instrument, and what file names to preprocess are included in

the configuration file. This file is used by both the preprocessors and the

translator.

3. Data Collection - Somehow, data collected on a node must be written to file

on the host. This data could be written directly to disk from the nodes using

prototype code provided by Intel. Another option might be to force the user

to run his own host program that calls a collection subroutine provided by

PRASE. A third option, however, was chosen.

A collection program, provided with PRASE, is started in the background on

the host. This program then waits for all messages destined for the host with

a predetermined process id number. This process id must be unique (not used

by the user). The dump routine is called by the node processes when certain

thresholds are reached. This routine sends the data to the special host process

id so that the collection routine can gather and store the data.

The user is allowed to set two thresholds pertinent to data collection. The first

is the number of records to keep for this run. The user specifies in a separate file

(not the configuration file but rather an include file for the collection routines

to use) how many records of data are allowed for this run. The second threshold

set by the user is how often dumping is accomplished. A user can specify this

threshold as 1, causing the collection routines to dump after every event. This

3-8

type of collection might be useful for debugging but is very expensive in terms

of message passing overhead. By being able to set how often to dump, a user

can save few records in memory and dump often allowing him to save as much

data as the disk drive will hold. He is not limited by the onboard main memory.

If the user sets this second threshold greater than or equal to the maximum

number of records, then dumping will not occur until the completion of the

run. For time critical applications, this is the preferred method.

If an application tries to collect more data records than the user designated,

PRASE will automatically cut off collection without affecting data records

already collected. However, if a user asks to collect more data records in

memory than the memory space available, the Hypercube will provide an error

message in the log file when loading to the nodes is attempted.

4. Data Storage Format - Data was stored both in memory and on disk in binary

format. This was done to save space. Because of this decision, a small program

was needed to view the data in an ASCII format.

The decision to store data in a binary format caused problems later in the

effort. The hypercube stores binary data in a certain order (low byte first).

The Sun workstation, where translation would occur, stores binary data high

byte first. Therefore, extra manipulation of the data was required because of

the storage format chosen.

5. Ease of Use - Preprocessors were included in the system to aid the user with

the task of changing his code. This was done to make the system easier to use.

This frees the user from having to understand all the details of the PRASE

system.

6. Global Variables and Routine Names - In order to avoid names that might

interfere with a user's application, reserved words begin with some form of

the word PRASE (either upper or lower case). Thus, as long as a user does

3-9

0
not implement variables or other names with these characters, the applications

program should be free from any conflict with the collection software.

7. Send and Receive Correlation - Seecube required a user's send and receive

message buffers to contain additional bytes at the beginning for Seecube use.

These bytes were used to send cross-referencing information between nodes.

These bytes are not required within PRASE.

PRASE implements a message count structure within each process. There

are separate structures for send and receive messages. Basically, a sequential

count is kept of each unique triplet of message type, corresponding node, and

corresponding pid. This count is included in the data records as they are saved.

Since the Hypercube keeps specific message types sent to or received from a

specific node and pid in order, the previously mentioned triplet coupled with

the sequential count, uniquely identifies a message on a single node.

0 To restate this idea, six pieces of information uniquely identify a message. They

are message type, local node, local process id, corresponding node, correspond-

ing process id (pid), and the sequence in which the message was sent/received.

The sequence counts are in reference to the beginning of a run. Even if tracing

is forestalled until some time after the start of the run, the counts are kept,

starting from the first message sent/received (whether the message event was

recorded or not). Any count has some limit depending on the word size being

used to store that variable. To remove this restriction from the count, a spe-

cial wrap data record was implemented. At some predetermined point, PRASE

recognizes that the count has grown big enough. At this point, a wrap record

is written to the data trace and the count reset.

Using this type of implementation, the number of messages can theoretically

go on to infinity (if the maximum number of records parameter is ignored for

the moment). The translator, however, does not count wraps forever but does

3-10

0
allow a large amount of wraps prior to overflow. For a more specific description

of the overall count process and correlation, see Appendix G.

A basic assumption is made here. It is that the iPSC Hypercube will not lose

or intermix messages of the same type. In defense of Seecube, its method is

much more general and more robust in the event of errors. It was decided,

however, that for PRASE that risk was acceptable enough to relieve the need

for adding the extra bytes at the beginning of each message.

8. Time Synchronization between Nodes - Synchronization is performed in a sim-

ple way. At preprocessor time, the lowest node number running processes is

identified. The first process id listed in the configuration file for this node be-

comes the "controlling process." This process takes charge of synchronization.

The controlling process (or CP) goes through the list of other processes that

are running for this current application, and communicates with them one by

one. All other node processes running will perform a receive and wait message

service and wait for its turn to synchronize. To illustrate the process, node

1 process id 1 will be used and will henceforth be referred to as Nl,1. CP

contacts N 1,1 to let it know that it is its turn to synchronize. N1,1 then sends a

message off to CP and waits for a reply, meanwhile saving the time (TSEND,)

that the message was sent. CP accepts N1,l's message, fills it in with a time

of receipt (TRgcrtptn), and immediately sends it back to node 1. As soon as

node 1 receives the message, it records a second time (TSEND2) and begins to

calculate.

The total message transit time is determined by subtracting TSEND1 from

TSEND2 . A one way transmission time is then calculated as one half of the

total transmission time. Thus N1,1 can now figure out an assumed time that

its synchronization message arrived at CP. This time will be callel THALF.

Since CP sent N1,1 the time TRECEIPT1 , N1,1 can now determine a difference

between its clock and CP's clock. Once done, we have synchronized this node

3-11

with CP. This time difference is then added to the base time (CP's start time)

on CP.

The result of all this is a single time that is subsequently subtracted from all

other times gotten directly from the node clock. When a time is read from the

node clock, and the subtraction time is subtracted, the result is a time that

tells approximately how many milliseconds have elapsed from the start of the

run.

9. Types of Data - There are actually three types of data records that are recorded

by the data collection subroutines. The first are records that pertain solely to

PRASE. An example of this type is the wrap records for send and receive

messages. The second type of record contains data pertaining to some type of

Hypercube node call such as copen, probe, recvw, sendw, and syslog. The final

record type holds data that the user selects. The user can place a subroutine

call into the code and pass a variable of his choosing. Different subroutines

are provided to support different variable types. In this way, the user can

collect data over time that is of specific interest. Although Seecube will not

support presentation of this type of data, other display routines or analysis

packages could be developed to analyze the data. It should be noted that

Seecube includes an integer field in each instrumentation call that could be

used to mark specific calls as unique. In a convoluted fashion, it could also be

used to trace integer values.

3.5 Lower Level Design

There are essentially four major parts to PRASE. Each of these parts will be

discussed, with some detail being provided. However, the intent here is not to get

into every minute detail of implementation. Rather, the purpose of this section is to

* provide some level of understanding as to how the major parts are designed.

3-12

3.5.1 Data Collector The data collector was implemented in two parts. The

first part is a set of subroutines, called by both C and Fortran, that perform the

necessary functions to collect certain performance data. These subroutines were

implemented in C.

Normally, data is collected pertaining to the instrumented call that has just

been made. For example, if a user's code calls the PRASESENDW call, the PRASE

routine will get a time prior to the service, execute the requested function (sendw),

get a time after the service, and then store the data.

For the receive without wait this flow may be slightly different. When a user

performs this type of receive call, the receive buffer, count, originating node, and

originating process id information may be invalid. This can occur if a receive is

issued prior to a message arrival. The PRASE subroutine checks to see if the data is

valid. If it is, normal flow occurs. If the data is invalid, collection is put on hold until

a status call is done that shows that the data is now valid. At this point, the data

is stored for the receive. The user is required to perform only one receive without

wait for a given channel at a time. Also, the user is required to call status if he does

not know that a message is ready at the time the receive routine is called. The user

could know that a message was ready prior to issuing a receive without wait by using

the probe service provided on the Intel Hypercube. In this case, the receive routine

should show a valid status when it checks and all should be well.

Certain data is stored when a recv is issued. Included in this data is the time

that the original service was called. When the message is finally shown to be received

by calling status, that original time is recorded in the trace along with an ending

time that reflects when the status was good for the message in question. This means

that if other trace entries were recorded after the initial call to recv but prior to

the completion of the event with a good status, those times will not be in order (at

least start times for events). If translation to Seecube format is desired, the user

must not call another Seecube-supported service during that interval. These would

3-13

include copen, cclose, recv, recvw, send, and sendw. Another call to recv might be all

right if the user calls it with different parameters, a different channel, and a different

message type and insures that he does not call status for the second recv until the

first recv completes.

The send without wait service is apparently handled differently in PRASE than

it was in Seecube. The Seecube code provided to AFIT appears3 to require a user

to call a separate routine to check status until the send buffer is free. The PRASE

code does not concern itself with when the buffer is free. The completion time for

the service is considered to be directly after the call is completed. Although it is not

unreasonable to require a user to call status to check on his message, PRASE was not

implemented in such a way as to hold off recording until a valid status was returned.

The user should be aware that the begin and end times do not reflect the same

information as when they are recorded for a send and wait message service. Once

sends without waits and sends with waits are translated, they will all be displayed as

sends starting at the begin time collected and ending at the ending time collected.

This could possibly be misleading to the user if he has not been made aware of the

situation. Thus, the User's Manual explains the situation. In this case, even though

the data does not reflect what it might, it is defined and can be dealt with.

Another unique item should be mentioned pertaining to events that appear to

complete in zero time. The data collector, during testing, has been shown to gather

data on messages that appear to be sent and received in zero time (or negative time

if synchronization was a little off). This apparently happens due to the coarse time

slice used by the node operating system (5 milliseconds). When the data is finally

displayed using Seecube, if the zero time situation occurred, no data is displayed

(except possibly in the data tables provided). This item is reflected in the User's

Manual.

3The word appears is used here because the author is not totally convinced of his understanding
of the Seecube code.

3-14

0
The second portion of the data collection software is a collection routine (pro-

gram) that should be started in the background on the host prior to running the

user's application. This routine will then run until killed by the user. Its job is

to collect any data sent to it. The instrumentation code running on the nodes will

dump data to this routine which will in turn write the data to a file. Each process

running on a node will have a separate file for its data. A file pertaining to node 0

pid 1 would be named nOpl .

3.5.2 Fortran Preprocessor The Fortran Preprocessor is designed to accept

Ryan-McFarland Fortran, and output a new program with instrumentation code

added. It determines which calls to change based on what is found in the configura-

tion file. Certain language features in Ryan-McFarland Fortran are not supported.

These are listed in the User's Manual included with this thesis.

The main job of the preprocessor is to add code that allows instrumentation to

occur. Specific statements need to be added in certain places within the code. The

preprocessor must be able to identify its current position within a file. It must know

when a change from specification statements to normal code statements occurs. Ba-

sically, then, the preprocessor steps through the Fortran input file trying to identify

each line's type as it goes.

Each line that is not a comment is cleared of white space characters (blanks

and horizontal tabs) and placed into upper case to facilitate searchin.g. Since Fortran

is not case sensitive, any combination of upper and lower case letters can be valid.

This could turn into a searching nightmare. To remedy this, all letters were changed

to upper case. Fortran also allows spaces to be placed freely in the code. Clearing

white space is performed to get the line closer to a format that eases the parsing

burden.

Another feature of the language had to be dealt with. Fortran allows continu-

O ation lines so that long statements can be extended past one physical line in length.

3-15

This requires identifying which lines are continued to insure that a line type is not

judged incorrectly.

Continuation lines are gathered into a single line which is changed to upper case

with white space characters removed. A define statement is used to set a maximum

number of lines in which the preprocessor will search for continuation statements. At

the initial implementation, this maximum was set to 50 lines. This means that any

statement that is continued must be completed within 50 lines or the preprocessing

may fail.

The updated code is placed into a file with a slightly modified file name so

that the user's original code is left intact. The original file name might be filename.f,

which is changed to filename.p.f. The Fortran compiler does not accept a file ending

with a p. Thus, this format was chosen for the new file name.

3.5.3 C Preprocessor Like its Fortran counterpart, the C preprocessor was

designed to accept code written in C to run on the Intel iPSC Hypercube. It is

important to note that the preprocessor is designed to work with code that has

already compiled with no errors. Results are unpredictable if syntax errors exist

within the code.

The C preprocessor is less complex than the Fortran version. Rather than

having to find each call to a subroutine that has been tagged for instrumentation,

the preprocessor simply places a define statement at the beginning of the file which

then causes all subroutine names referenced throughout the file to be changed to the

new name.

An example is in order to clarify what is going on. If a user wants to collect

data on all sendw Hypercube calls, he places this information in the configuration file.

The preprocessor then places a define statement at the beginning of the output file so

that all calls to sendw are changed to PRASESENDW. Hence, the instrumentation

subroutine is called rather than the normal Hypercube subroutine.

3-16

Internally, a dynamically allocated list of lines is kept. Each record of this list

contains both the original line and a decommented version of the line. Removing

all comments made the preprocessor code much easier to write. Unlike Fortran, C

allows executable statements &,-d comments to reside on the same line. A single

comment can also span several physical lines. It was much easier having to only

parse actual C statements. It should be noted that the C language preprocessor

apparently decomments the file as well. This was noticed when the cc -P option was

used on the Intel iPSC Hypercube.

The only parsing and changing of code required is within the main routine.

To facilitate ease of code implementation, the user is required to place a special

comment in the main routine at a specific place. This tells the preprocessor where

to add certain code and that it is now in the main routine. It continues to look

through the main routine for other instances where code changes are required. Once

the end of main is found, its job becomes one of copying the rest of the file into the

new output file.

3.5.4 PRASE to Seecube Translator The translator takes data output by the

PRASE system and translates it into Seecube format. This translation is done so

that the Seecube graphical displays may be used. The mapping of PRASE data to

Seecube data has been detailed in Appendix G. Please refer to that appendix to see

how the data collected by PRASE can be used to determine Seecube data records.

The translator has been broken into three passes. The initial pass reads in the

PRASE data and builds most, but not all of the Seecube fields into new records.

Pass 2 fills in all other fields but one. Pass 3 fills in the final field and outputs the

data into a file that can be used by the Seecube Resolver. The resolver can be run

and the graphical routines can be used to display the data collected.

The translator was originally developed on a DEC Microvax 3 in Ada and was

then moved to a Sun workstation using Ada. Because the data file was written in

3-17

binary, a problem was encountered at this point. Both the Intel iPSC Hypercube

and Microvax order their bytes in reverse order with low byte first. However, the

Sun workstation does not. Therefore, the initial reading of the file had to be different

depending on which machine was being used to translate the files. Two routines were

included in the code, so that, depending on the machine being used, the correct data

representation could be achieved.

The PRASE system allows the user to specify a time at which data collection

begins. If the user chooses a time other than time 0, all records may not be present

for correlation. This might happen if a sendw service was executed on a node just

before the collection start time, and a recvw was executed on the receive node right

after the collection start time. The receive data would be captured but the send data

would not. When records can not be correlated, the preprocessor will tell the user

how many sends and receives were not correlated over all the nodes and processes.

Uncorrelated sends and receives can also occur if the maximum number of data

records causes collection to stop prior to the end of a run.

The translator will filter out any data records not pertinent to the translation

process. The only records of interest to the translator axe send type records, receive

type records, channel open and close type records, and message count wrap type

records. All other record types axe ignored in reference to translation.

Another important factor is that only one process was collecting data per node.

As far as can be determined, Seecube will not support multiple processes per node.

Thus, the translator was not written to support multiple processes running on a

single node. If the user's configuration file actually reflects the data collected, and

multiple processes per node were used, the translator will flag an error and stop.

Section 3.5.1 discusses certain issues pertaining to sends and receives without

waits. These issues axe to some degree pertinent to the translator as well. The reader

* should review that section to gain a better understanding of the translator.

3-18

3.6 Items Supported

In Chapter Two, several measurements were discussed. This section will re-

view some of those items and discuss how they are supported in PRASE. Not all

items from Chapter Two are implemented in PRASE. Certain measurements are

supportable, but are not currently calculated. To come up with specific values for

these supportable but not currently calculated measurements, additional software or

a statistical analysis package would be required.

3.6.1 CPU Utilization Data is currently captured that can support this mea-

sure in one form. If idle time is defined as "the time spent waiting in a recvw service

while no corresponding send had occurred," then CPU utilization could be calcu-

lated from the data collected. The measure, however, is not currently calculated.

Seecube is capable of showing when a processor is in a receive state but no send has

been initiated.

3.6.2 Turnaround Time A loose interpretation of this measure has been cap-

tured within PRASE. Since the start of a run begins at global time zero, the be-

ginning time of a process is known. PRASE saves the last data record for an end

record. The end record, then, provides the total run time. This time can then be

compared to other runs or just used as is to give the user a feel for the amount of

time required by his process.

3.6.3 Seecube Measurements Since translation from PRASE to Seecube for-

mat can be accomplished, certain Seecube measures pertaining to message traffic

can be supported.

3.6.4 Monit Measurements In a general sense, PRASE can be used to gather

information on process activity as well. By judiciously placing marker collection

routines in a user's code, one can find out how many times a routine is called or

3-19

even how much of the overall time a routine uses. A user might do this by calling

the character marker facility upon entering a specific routine. The user could then

also call the character marker routine upon exiting that routine. Once this is ac-

complished, data is present to determine the time spent in a routine. Although this

type of process activity does not appear to be what Monit captures, it is in some

sense st;11 oriented towards the process rather than the message events.

3.6.5 Local User Measurements of Interest Several measurements were iden-

tified by local AFIT users. Many of them are readily available or can be calculated

from the data saved. Some of these are message sizes, amounts of messages, number

of messages waiting at a given time, message type statistics, queue lengths, waiting

time statistics, and speedup (if data from a previous run is also available). CPU idle

time and utilization can be determined if the definitions discussed in Section 3.6.1

are used. Waiting time statistics could also be determined pertaining to how long

a receive and wait service waited. User markers are supported for several different

data types. They include logging the value as well as the time of the logging event.

3.7 Summary

This chapter has accomplished four major items. First, certain project alter-

natives and the subsequent decisions have been listed. Next, some overall system

design considerations were discussed. Third, some details pertaining to each ma-

jor portion of the PRASE code were provided. Finally, certain items discussed in

Chapter Two that are supported/supportable were given. In this thesis' context,

supportable means that sufficient data was collected to determine a specific mea-

sure, but calculations using that data have not been done.

3-20

Hopefully, the reader now has a better understanding of the PRASE system.

The next chapter will consider testing issues for PRASE. In the following chapter,

and in the User's Manual, problems with the system as well as unsupported items

are discussed.

3-21

0
IV. Testing

Testing the PRASE system was approached from three distinct directions.

First, as the code was being developed, it was also being tested. Normally, as a

subroutine or function was added, the program would be compiled and checked.

This was highly unstructured testing but facilitated an initial check of the code and

its basic functions.

Second, more structured testing was accomplished for configuration file inputs

to the code. The methods used to develop test cases were those of equivalence class

testing and boundary value analysis [101. Both valid and invalid cases were used to

test PRASE. This type of testing was also applied to the prase.user.h include file set

up by the user.

Third, system level testing was accomplished. This type of testing was done

to check out system functionality. It also was used to determine how the system

fit together as a whole. An example from a preliminary system level test was one

where ten messages were sent from one node to another. The receiving node was

forced to wait several seconds before accepting the messages. Then, ten receives were

accomplished. The purpose of this test was to insure that the system as a whole was

doing what it was supposed to be doing. The results were viewed on the Seecube

graphical displays and in fact reflected the expected algorithm performance.

The remainder of this chapter is devoted to these last two types of testing. In

the next section, the equivalence classes and boundary values will be discussed. In

the following section, an overview of the system level tests will be given to show the

types of system functions tested. For a breakout of the actual test cases and results

for both of these categories, the reader should refer to Appendix D. An overview of

these results is included in Section 4.3 of this chapter.

4
4-1

4.1 Equivalence Classes and Boundary Values

A major means of input to the PRASE system is through the configuration

file. Therefore, most of the tests developed via equivalence classes pertain to the

configuration file in some way. As the equivalence classes are listed, boundary values

will be used in specifying how a class should be tested.

The user also has the means of tailoring the system by changing values in a

user include file. The values from this file will be considered in section 4.1.2.

4.1.1 For the Configuration The configuration file is structured in a very

specific way. For an example of this, refer to Appendix H. The purpose here is to

identify both acceptable and unacceptable inputs from which actual test cases can be

generated. No attempt has been made to cover all possible cases of errors and valid

combinations; rather, the purpose is to test the general rules allowed in making up

a configuration file. The preprocessors handle configuration file inputs in a different

way than the translator. Thus, any test cases generated should be run against both

preprocessors as well as the translator.

Six different groups of information are allowed in the configuration file. Each

of these groups will be discussed. Comment lines will also be considered. As a

convention, the equivalence class number will be placed in parenthesis following the

text for each class.

e Comments - A comment line should begin in column one with a '#' sign.

Anything following on the line is ignored.

- Valid Equiv. Class - Begin a comment with a '#' in column 1. (1)

- Invalid Equiv. Class - Begin a comment with a '#' in column 2. (2)

- Invalid Equiv. Class - Include a comment but with no '#' sign. (3)

* Node Information Groups - These groups hold information pertaining to which

nodes within the Hypercube are actually running code. Node groups and pid

4-2

0
groups must go together with a pid group being the very next group encoun-

tered in the file. A node group consists of the group identifier on the first line,

a beginning node on the next line, and the ending node on the third line. For

more specific information about this group, refer to Appendix H.

- Valid Equiv. Class - Include a valid Node group in the file with no other

errors. Have the beginning node be the lowest node number possible and

the ending node the highest node number possible. (4)

- Invalid Equiv. Class - Place the group identifier (NODE) beginning in

column 2. (5)

- Invalid Equiv. Class - Leave out the beginning node information. (6)

- Invalid Equiv. Class - Leave out the ending node information. (7)

- Invalid Equiv. Class - Provide an invalid range for the beginning node

information. Use a -1 for the value. (8)

- Invalid Equiv. Class - Provide an invalid range for the ending node infor-

mation. Use a value one greater than the largest possible node number.

(9)

- Invalid Equiv. Class - Place the beginning and ending node information

into the file in reverse order. (10)

* Pid Information Groups - A pid information group lists the pid numbers of the

processes that will be running on the nodes listed in the previous node group.

A pid group must contain at least three lines but can have up to four lines.

The first line must hold the group identifier beginning in column 1. The next

line should contain a single number representing the number of pids that will

be listed. The third line holds actual pid numbers separated by at least one

space. Up to ten pids can be listed on line three of a pid group. If more than

10 pids are required, the first 10 MUST go on line 3 with the remainder of the

pids being listed on line 4.

4-3

- Valid Equiv. Class - Include a pid group with a minimum number of pids.

Use the lowest possible valid pid number. (11)

- Valid Equiv. Class - Include a pid group with the maximum number of

pids. Insure that at least one of the pids is the largest number a pid can

be. (12)

- Invalid Equiv. Class - Place the group identifier in column 2. (13)

- Invalid Equiv. Class - Leave out the group identifier. (14)

- Invalid Equiv. Class - Insure that a node group is included but do not

include a pid group. (15)

- Invalid Equiv. Class - Include a pid group prior to a node group. (16)

- Invalid Equiv. Class - Leave out line 2 of the pid group. (17)

- Invalid Equiv. Class - Leave out line 3 of the pid group. (18)

- Invalid Equiv. Class - Include a pid number that is one number too small

for the valid range of pid numbers. (19)

- Invalid Equiv. Class - Include a pid number that is one number too large

for the valid range of pid numbers. (20)

- Invalid Equiv. Class - Use more than 10 pids but only place 8 on the third

line of the pid group. Place the remainder of these pids on the optional

fourth line. (21)

- Invalid Equiv. Class - Use a number of pids of -1. (22)

- Invalid Equiv. Class - Use a number of pids one greater than the valid

range. (23)

* Instrumentation Information Groups - This group communicates to the PRASE

system which calls to instrument. Any calls listed will cause data pertaining

to that specific call to be gathered. The group consists of a group identifier in

column one of line one, an integer value on line two representing the number

4-4

of calls to instrument, and subsequent lines containing one name per line of

the calls to instrument.

- Valid Equiv. Class - Include a valid group with all the valid calls being

instrumented. (24)

- Valid Equiv. Class - Include a valid group with only one call being in-

strumented. (25)

- Valid Equiv. Class - Include a call to instrument. Do not start it in

column 1. (30)

- Invalid Equiv. Class - Begin the group identifier in column 2. (26)

- Invalid Equiv. Class - Leave out the group identifier. (27)

- Invalid Equiv. Class - Include a number of calls of 0. (28)

- Invalid Equiv. Class - Include a number of calls that is one larger than

the maximum. (29)

- Invalid Equiv. Class - Include an invalid instrument type (all in capital

letters) in the proper location. (31)

- Invalid Equiv. Class - Include two valid instrument types next to each

other on the same line. (32)

e Libraries Information Group - This group is for future use and is not required

to be in the configuration file. However, it should be accepted as valid if

included. The future purpose is to support automatic makefile generation.

The user could stipulate any libraries or object modules he would like to add

to the defaults already built into the system. The group must begin with the

group identifier in column one of line one. The next line includes the number

of libraries/object modules the user wishes to add. Subsequent lines hold the

*user entered values.

4-5

- Valid Equiv. Class - Include a valid group with the minimum number of

entries allowed. (33)

- Valid Equiv. Class - Include a valid group with the maximum number of

entries allowed. (34)

- Valid Equiv. Class - Include a number of entries of 0. (37)

- Invalid Equiv. Class - Place the group identifier in column 2. (35)

- Invalid Equiv. Class - Leave off the group identifier. (36)

- Invalid Equiv. Class - Include a number of entries one greater than the

maximum allowed. (38)

- Invalid Equiv. Class - Place two library/object names on the same line.

(39)

" Start Time Information Group - This group includes the time that the collec-

tion software should start collecting data. The first line of this group should

include the group identifier starting in column one. The next line should in-

clude the start time.

- Valid Equiv. Class - Include a valid start time group with the smallest

start time possible. (40)

- Invalid Equiv. Class - Place the group identifier starting in column 2.

(41)

- Invalid Equiv. Class - Leave out the group identifier. (42)

- Invalid Equiv. Class - Leave out the time. (43)

- Invalid Equiv. Class - Include a start time of -1. (44)

" File Names Information Group - This group holds the names of the files that

the user wants PRASE to preprocess. The group begins with a group identifier

on line one and starting in column one. The second line holds the number of

files to process. Subsequent lines hold the actual file names.

4-6

- Valid Equiv. Class - Include a valid group with the minimum number of

files allowed. (45)

- Valid Equiv. Class - Include a valid group with the maximum number of

files allowed. (46)

- Invalid Equiv. Class - Begin the group identifier in column 2. (47)

- Invalid Equiv. Class - Leave out the group identifier. (48)

- Invalid Equiv. Class - Include a number of files of 0. (49)

- Invalid Equiv. Class - Include a number of files that is one larger than

the maximum. (50)

- Invalid Equiv. Class - Include a file name that does not start in column

1. (51)

- Invalid Equiv. Class - Include a file name that does not exist. (52)

- Invalid Equiv. Class - Include two file names on the same line. (53)

9 Invalid Group Identifiers - Group identifiers are required to be in capital letters

and begin in column one. There are only six valid identifiers.

- Valid Equiv. Class - Include all six valid identifiers. (54)

- Invalid Equiv. Class - Include the group identifiers with some lower case

letters. Do this for each identifier. (55)

- Invalid Equiv. Class - Include a group identifier name that is all in capital

letters but is not one of the six valid ones. (56)

- Invalid Equiv. Class - Include two group identifiers on the same line. (57)

e Others - A few miscellaneous tests will be listed here.

- Invalid Equiv. Class - Run the preprocessors and translator with no

configuration file present. (58)

4-7

Invalid Equiv. Class - Run the translator with a missing data fie. For

example; if the configuration file says that there was a node 0 pid 0 process

running, then there should be a file containing the data gathered. That

fie should be present at translation time. Remove that file and run the

translator. (59)

4.1.2 User Include File Inputs A user can change values in a user include file

that tailors the system to his application. Four values are currently required in this

file. First, a value should be provided that determines the maximum number of data

records stored for a particular application. Second, a value should be included that

stipulates how often dumping occurs. Third, the user should provide a value that is

greater than or equal to the number of message types used in any particular appli-

cation. Finally, the user needs to provide the maximum number of pids being run

on any one node. The principals of equivalence classes and boundary value analysis

will be applied in most cases to the values found in this file [10]. The include file dis-

cussed here is the prase.user.h file. Another include file called PRASE-FOR.H (for

Fortran use only), has one value that must be the same as a value in the prase.user.h

file. No official tests were accomplished for this file.

* Maximum Number of Data Records - This value is used to set up the maximum

number of records that will be collected for the associated application.

- Valid Equiv. Class - Include a valid number. (60)

- Invalid Equiv. Class - Include a negative value. (61)

" Maximum Number of Records Saved Prior to Dump - This value is used to

determine how often the collection routines should dump their data.

- Valid Equiv. Class - Include the lowest valid number here. (62)

- Valid Equiv. Class - Include a number larger than 1000. (63)

4-8

- Invalid Equiv. Class - Include a 0 here. (64)

- Invalid Equiv. Class - Include a number that is too large. (65)

* Maximum Number of Message Types - This number is used to stipulate the

maximum number of message types allowed for a specific application.

- Valid Equiv. Class - Include a number the same as the number of message

types used. (66)

- Valid Equiv. Class - Include a number larger than the number of message

types used. (67)

- Invalid Equiv. Class - Include a number smaller than the number of

message types used. (68)

- Invalid Equiv. Class - Include a number of 0. (69)

e Maximum Number of pids per Node - This number is used to stipulate the

maximum number of processes running on any single node in the system.

- Valid Equiv. Class - Include a number the : .me as the number of pids

being used. (70)

- Valid Equiv. Class - Include a number bigger than the number of pids

being used. (71)

- Invalid Equiv. Class - Include a number smaller than what we are using.

(72)

4.2 System Level Testing

This type of testing has less structure in the formulation of what to test than

did the equivalence class/boundary value analysis type of testing. It is, however, just

as important. Its purpose is to test functions of the system as well as the system

4-9

as a whole. The question one might raise is, "Can the system, from start to finish,

accept a user's code and present the correct results?"

Decisions had to be made as to what areas to test and how to test them. Trying

to test everything possible, or even every function, was not even considered. Rather,

several tests were chosen to "try out the system" in an attempt to provide the reader

with some level of confidence in its capabilities.

The best test for a system of this kind is use by multiple users. This stems

from a philosophy that live data is an excellent testing aid. The more use over time

the system gets, the more problems that can be identified and fixed. However, since

time is not always in great supply, the following test cases were used.

" Test Case 1 - This test's goal is to determine if the system captures the proper

flow and timing of messages. The following items were incorporated into the

* test.

1. Send 10 messages, one every second from one node to another.

2. Have a second node wait 20 seconds and receive messages one at a time

every second.

3. Use the clump and queue displays as well as the time provided by Seecube

to insure that messages are being displayed in the correct amounts at the

correct times.

" Test Case 2 - This test is designed to check communication paths shown by

Seecube. Correct communication paths will be determined based on the deter-

ministic Intel routing algorithm.

1. Send a message from a node to a nearest neighbor node. Insure that the

path is correct.

4-10

2. Send a message from a node to another node that has one intermediate

node. Send the message back. Insure that the paths are correct. The

path back should be different.

3. Send a message from a node to another node that has at least two inter-

mediate nodes. Send the message back. Check the paths.

" Test Case 3 - This case tests to see if data gathering starts on or after the time

provided in the configuration file.

1. Send 1000 messages from one node to some other node(s).

2. Provide a start time in the configuration file that should be a time some-

where in the middle of the time required to process these messages.

3. Check the data gathered to insure that data begins being collected at the

correct time and that the data displayed is correct.

" Test Case 4 - The purpose for this test case is to check for validity of global

times being saved in the traces. The data gathered in Test Case number 3

should be used for the analysis.

1. Times for corresponding sends and receives will be considered to check

for validity. This is very subjective but is important none the less.

" Test Case 5 - This test case should be used to test the translator in conjunction

with the data collector.

1. Use the data collector to capture several types of records.

2. Run the results through the translator to insure that, even with data that

is not pertinent to translation, the translator still works.

e Test Case 6 - This test case uses code prepared by someone other than the

author to test the preprocessing function.

4-11

1. Obtain and preprocess a Fortran application and check the results.

2. Obtain and preprocess a C application and check the results.,

" Test Case 7 - This test case will be used to test the user callable marker routines

provided by PRASE.

1. Use a C program to write to each allowed marker routine and then check

for a correct trace (with correct values).

2. Use a Fortran program to write to each allowed marker routine and then

check for a correct trace (with correct values).

" Test Case 8 - This test case will exercise the multiple processes per node option

allowed by PRASE.

1. Use a program that runs multiple processes per node.

2. Include known communication patterns between nodes and between pro-

cesses on the same nodes.

3. Collect data and analyze the results.

" Test Case 9 - The purpose of this test case is to "try out" the system as a

whole.

1. Use the local Hypersim libraries and a driver routine.

2. Take the example all the way from the code libraries to displaying the

results using Seecube.

3. Analyze results.

4.3 Evaluation of Test Results

Appendix D contains information describing how to obtain a copy of the actual

test cases and an evaluation of the results for each case. Accompanying the results,

any problems identified are provided along with the action (if any) taken.

4-12

Here, an overview of the results is provided.

" In general, configuration file and praseuser.h inputs are not checked as well as

they should be or are not handled properly when errors are induced (possibly

pausing erroneous results). Several tests brought out the fact that more ex-

plicit error messages would be helpful when dealing with user inputs into the

configuration file and prase.user.h file. At this point, the User's Manual was

the vehicle chosen to deal with this problem. It tells the user how to make up

the configuration and prase.user.h files properly. Specific problems have been

listed in Test Results (all errors will not be listed here). At some point in the

future, it would be nice to handle these problems in a more user friendly way.

" A few error messages in the code were either updated or rewritten to better

reflect the situations encountered.

* At least in one case, code updates were performed to fix a problem.

" In the case of the translator, certain errors were ignored because it does not

need to deal with some areas of the configuration file. In some cases, this

caused the translator to run to completion without looking for any files to

process (because of errors in certain groups). Since the translator will probably

not be used without first using a preprocessor, this was considered acceptable.

More checking and more error messages would be nice; however, they will not

be accomplished at this time. The main vehicle for dealing with this problem

was to insure that the User's Manual has information pertaining to the correct

formats for these files.

" When the maximum number of message types is smaller than the number of

types a user attempts to use, there is a problem. The only indication of the

error is in the trace itself. A value of -99 is placed in the trace in the count

field. This was by design. However, if a user does not examine the trace, and

just processes the data, he is likely to get erroneous results. The User's Manual

4-13

is the current vehicle for dealing with this problem. However, eventually an

error message should be written to the syslog file so that the user will have

some indication of a problem.

* Certain erroneous entries in the prase.user.h file are flagged at compilation or

link time. Correct ranges of inputs must be entered to be able to compile. The

User's Manual is again the means used to tell the user what the appropriate

entries should be.

" When instrumenting syslog calls, a problem was noticed. The following is an

example of code that would cause the problem.

CALL SYSLOG(mypido,'my msg')

The preprocessor changes the call by assigning the character portion of the call

to a temporary variable and then passes that variable into the instrumented

version. The problem was that the character version placed into the temporary

variable is changed from the original. It was changed to uppercase and all

blanks were gone. The User's Manual reflects this problem. To get around this,

the message can be assigned to a variable prior to calling syslog. Then syslog

can be called with the variable name rather than a character constant. This

problem only pertains to the Fortran preprocessor. No fix will be accomplished

at the current time.

" Apparent problems with the Memory Cube were encountered. Problems that

were experienced, after a reboot, were not repeated.

" A problem was uncovered in the procedures being used. The maximum pids

value was being changed in the praseuser.h file but not in the PRASEYFOR.H

file. In certain situations, this appears to be a real problem. The User's Manual

reflects the need to keep these straight.

" An operational item pertaining to Seecube was found in that unless sliders

are set correctly, the trace will not play all the way to the end without user

4-14

interaction. The correct interaction, and the fact that this item exists, were

documented in the User's Manual.

" The following Fortran statement type was found to be unsupported.

200 if(status(HOSTCHAN).eq.NOTBUSY) goto 300

The preprocessor did not instrument the status call as it should. This was not

considered in the design of the preprocessor. The User's Manual reflects the

fact that this is an unsupported feature allowed by Fortran.

" Certain host code used in testing stopped the processes on the nodes by killing

them. Thus, the PRASEEND routine was never encountered and no data was

collected. The User's Manual discusses this situation.

Certain unsupported features are known to exist. For example, logical if state-

ments in Fortran are not supported when a call to a routine the user wishes to

instrument is found in the result portion of the if statement. Statement function

statements in the main routine of a Fortran program are also not supported. Also,

for a user to reconfigure the run he wishes to instrument, he must begin again at the

preprocessing stage rather than just being able to run code on different nodes and

pids.

Although testing brings out negative aspects of the project, positive aspects

were alb realized. In certain cases, things seemed to go well. Apparently correct

results were able to be captured and displayed. Even though several errors have

been uncovered, it appears that PRASE can be used to aid a parallel programmer.

4-15

4.4 Summary

This chapter has attempted to convey the testing that applies to the PRASE

system. When changes are made to the system in the future, it would behoove the

maintainer to rerun pertinent test cases to insure that proper system functionality

is maintained. As the system matures, test cases should be added or deleted from

this list as appropriate.

4-16

V. Conclusions and Recommendations

5.1 Conclusions

It is exciting to have provided a new monitoring capability to the AFIT user

community. However, this capability is not as mature as it should be. First, PRASE

is not yet easy enough to use. If a system is hard to use, it will probably not be used.

This chapter contains some recommendations pertaining to this aspect of PRASE.

Second, PRASE needs many and varied user applications to test it out thoroughly.

Something on the order of Beta testing is needed to really exercise the system. The

PRASE system delivered with this thesis provides a foundation for further work. It

is useful and may prove valuable to several users.

Overall, even with many and varied problems, the effort seems to be an initial

success. PRASE can monitor code on the Hypercube. It has maintained compati-

bility with Seecube, thus providing the important graphical displays. PRASE is a

foundation that can be built upon in further work.

5.2 Recommendations

PRASE has only begun to approach what it should become. As mentioned in

Chapter One, PRASE is not yet a software environment. Much work could be done to

make the system more usable as a whole. The following is a list of recommendations

with a short explanation where needed.

e Graphical Interface - At least two functions in a graphical interface seem to

be of some possible use. First, a user interface that ties several of the PRASE

programs together would be very helpful. A user then might only need to press

buttons to initiate commands that currently must be typed. The interface

could also guide a user through a monitoring session by presenting a step by

5-1

step list of items to be accomplished. The configuration file could be built by

the interface alleviating potential problems with bad configuration files.

Second, new graphical techniques could be explored in presenting the data

collecte (. Three dimensional representations are of particular interest to this

author.

" Preprocessor Enhancements - The preproceasors could be extended to include

an automatic makefile generation capability. This would add any user specified

libraries/object modules to a default set of required libraries/object modules

to produce a makefile. This might be another item that would make the

monitoring task easier for the user.

There seems to be some value in extending the Fortran preprocessor to support

more of Ryan-McFarland Fortran. At this point, it does not totally support the

language. The C preprocessor could also be made more general by releasing

the user from the need to place a 'special' comment in his code.

Anoth,_r idea pertaining to updating the preprocessor is to support data col-

lection on subroutine utilization. If placed in a subroutine monitoring mode,

the preprocessor could automatically place the appropriate calls in the code to

record start and stop times for each subroutine. The data could then be used

to determine which subroutines were taking the most time.

Another mode the preprocessor might have would be one of a variable moni-

toring mode. It would be useful if it could be told the name of a variable to

trace, and the preprocessor would automatically set the code up.

" Data Collection Enhancements - These routines could be extended to support

vector routines, or any routines of interest to a user.

Also. the data collection software should be updated to be more flexible in

allowing the user to run his code on different node configurations without

having to go through the whole process each time a change is made. A potential

5-2

idea in this area is to let the praseclct routine upload the configuration to the

node code as opposed to compiling it in.

The collector should put out error messages when wrap count errors are pos-

sible. Rather than just writing a designation to the trace, a write to syslog

should also be accomplished.

The situation with the start times pertaining to a recv service should be fixed.

Briefly, this is where a recv can be called and before it can be shown to complete,

other trace records are written. The problem occurs in that the start time

recorded, once a status clears the recv, is possibly earlier in time then the

previous item in the trace. This means that the trace no longer insures a

time order sequence for all times entered. Seecube was written to deal with

this problem by having separate events for non-blocking services [4:28]. This

enhancement should be made and the translator updated. This will hopefully

make it harder for a user to be able to collect bad data. The growth of the

system should definitely be directed toward protecting the user.

* Timing Studies - It would be interesting to know the overhead placed on the

system when PRASE was invoked. Timing studies for diffcrent situations could

be accomplished.

* Module Sizing - Another valuable piece of information to know would be how

big the code you are adding is. This could be done based on which subroutines

were being called as well as how many records, pids, and message types were

being used.

o Testing - Several users making use of the code would be valuable in a testing

sense. The use could bring to light other problems or enchancements that

might be valuable.

9 Error Corrections - Several problems have been listed in Chapter 4. These

problems should be resolved.

5-3

5.3 Summary

Admittedly, PRASE still has several problems to overcome. It is not as user

friendly as it ought to be and certainly does not provide all the capabilities it might.

Graphical shells, user direct d processing, better data collection capabilities and

more could make the system much better.

PRASE has just begun. If it is enhanced, it can become a more useful tool for

the parallel processing user. I hope that the effort will not stop here.

5-4

Appendix A. User's Manual

The following pages contain the User's Manual for the PRASE system. Pages

are numbered based on the manual, not on this appendix.

A-1

PRASE
User's Manual

December, 1988

Table of Content 8

Page

Table of Contents....................................

List of Figures.....

I. Introduction.....

1. 1 Overview.......

1.2 About this Manual...

1.3 Odds and lEnds 1-2

1.4 Using PRASE. 1-3

II. Set Up 2-1

2.1 Sun Workstation. 2-1

2.2 Microvax 2-2

2.3 Intel iPSC Hypercube. 2-2

2.4 The Configuration File 2-3

2.5 The prase..user.h File. 2-6

2.6 The PRASE-FOR.H File. 2-8

2.7 Example Flow 2-9

III. Preprocessing. 3-1

3.1 C Preprocessing. 3-1

3.2 Fortran Preprocessing. 3-3

3.3 Example Flow 3-5

3.4 Things You Should Know 3-6

IV. Data Collection 4-1

4.1 Example Flow 4-6

Page

V. Translation. 5-i

VI. Using Seecube.....................................6-1

VII. Collecting Your Own Data. 7-1

7.1 C Support and Syntax 7-i

7.2 Fortran Support and Syntax 7-3

VIII. Very Important! Please Read. 8-1

Appendix A. Configuration File Example. A-i

Appendix B. Uscr File Example B-i

Appendix C. Format Breakout for pv C-i

Appendix D. Obtaining Information about Seecube D- i

List of Figures

Figure Page

1.1. User Checklist 1-5

0
PRASE

User's Manual

L Introduction

1.1 Overview

PRASE is an instrumentation software package that allows user of the Intel

iPSC Hypercube to gather data pertaining to software that executes on the Hyper-

cube nodes. A user can gather data pertaining to message passing events as well

as other Hypercube specific subroutine calls. Facilities also exist to allow a user to

monitor variables within his program. This gives the user the ability to keep track

of a specific variable's change over time.

Synchronization is performed so that events happening on one node can be

compared, in some rough sense, to events happening on another node. PRASE

is compatible with Seecube, a software package obtained from Tufts University in

Massachusetts. The Seecube Sequencer can be used to graphically display message

passing data collected using PRASE.

Graphical displays do not exist for all of the features made available through

the use of the PRASE data collection software. Also, several steps are required to

use PRASE. PRASE may be a tool that will aid you in a better understanding of

your parallel processing software. Comments on how to make the system better are

welcomed; because PRASE is a tool for the user.

1.2 About this Manual

* The next five chapters will walk you through the step by step requirements

for using PRASE. Certain setup procedures are required on the machines you will

1-1

be using. Once set up, you will use one of two preprocessors to prepare your code

for use with PRASE. Once you have completed preprocessing, it will be time to

collect data on the Hypercube. Next, if you wish to use Seecube to graphically view

message passing results, you will use a translation program to prepare the data for

use by Seecube. The Seecube Resolver should then be used, followed by the Seecube

Sequencer.

After the step by step procedures have been given, a chapter has been in-

cluded that discusses how a you can collect data on your own variables and program

execution. This chapter includes syntax.

The last part of this manual touches on some very important items that you

as a user should know. To use PRASE effectively, and to better understand what

PRASE is doing or isn't doing, you should read the entire manual (especially the

last part). If you don't read the entire manual, you may assume that PRASE is

doing something that it is in fact not doing.

1.3 Odds and Ends

You should have accounts on three machines if you want to be able to take ad-

vantage of the full range of capabilities provided by PRASE (and Seecube if you wish

to use it). The three machines you will need access to are (1) any color Sun Work-

station, (2) any Microvax running Digital Equipment Corporation's Ultrix operating

system1 , and (3) an Intel iPSC Hypercube.

The code you want to gather data on should be written in one of two languages.

It can be in C for the iPSC Hypercube or in Ryan-McFarland Fortran for the iPSC

Hypercube. One more thing about your program before we proceed. Your code must

compile with no errors before you use the preprocessors. If it does not compile, you

should not attempt to preprocess your code. More on this later.

I The translator and preprocessors will run on a Microvax under the Ultrix system. The Seecube
software must run on a Sun Workstation.

1-2

1.4 Using PRASE

An example is included here to give you a feel for the steps required to use

PRASE.

Peter Parallel is a new hot-shot parallel programming whiz who just
arrived at AFIT. He has written his first parallel program (and possibly
his last if his instructor gets a look at his code). He even has gotten
his code to compile and run on the Hypercube but cannot understand
why he is not getting superlinear speedup over the sequential version.
Needless to say, he thinks it is a hardware problem.

He talks to the system manager about running diagnostics, who calmly
suggests that he might have some unexpected software overhead. Well,
Peter is hurt; but, with great restraint he accepts the challenge of moni-
toring his code behavior using a package called PRASE.

Peter is told that he can either use a Microvax or a Sun Workstation to
prepare his code for monitoring. He chooses the Microvax and begins.
First, he copies his source code (which compiles) to the Microvax. He
then runs a script file which sets up certain commands he will need in
the course of using the Microvax portion of the PRASE system. He then
executes his first command to copy files into his default directory. He
needs to do this the first time he sets things up for a new program he
wishes to monitor.

Next, Peter edits a configuration file that communicates to PRASE cer-
tain required information pertaining to his software and what exactly he
desires to monitor. Once editing is complete (and Peter figures out how
to get out of the editor), he runs the preprocessor for C Hypercube code
(since C is the language his program is written in). He then copies the
new version of his source code back to the Hypercube.

Now, Peter logs on to the Hypercube and runs a setup procedure there.
Again, since this is the first time he is using PRASE for this program,
he must execute a script that sets things up for new usage. Peter needs
to edit a user file to prepare PRASE (and again he has trouble getting
out of the editor). Once complete, he compiles the PRASE subroutines
using a previously set up command.

Peter is almost ready to link in the PRASE code with his preprocessed
code. He changes his makefile so that the PRASE subroutine's object
module gets linked in, and he compiles and links his code.

Peter now gets the Hypercube for his use and loads it for the proper
dimensions. Next, he uses another command set up for him to begin a

1-3

collection routine that runs in the background on the host of the Hy-
percube. Once done, he runs his code. Once complete, Peter now must
move the data to a Sun Workstation since he wants to use Seecube to
look at the results. He does this (using the binary mode in ftp).

Peter again runs a setup command and then executes the translator to
prepare his data for Seecube. After translation, he uses the Seecube
Resolver and then the Sequencer. Just then, the system manager walks
over and happens to glance at the screen. He mentions to Peter that it
appears that he is sending ten messages every time any communication
takes place. Peter proudly replies, "you bet, I wanted to make sure my
messages didn't get lost."

Although none of us are like Peter Parallel (except for maybe the author and

developer of the system), we often make mistakes without realizing what we are

doing. Hopefully, by following the steps illustrated in our example, you will be able

to use PRASE (and Seecube) to gain a better understanding of what your software

is doing.

The following figure contains a summary of what needs to be done to use

PRASE from start to finish (including using Seecube). You may want to use it as a

reference or checklist to remind you of what steps are required. Several commands

and acronyms are included that will be explained later in the manual. During your

initial reading, use this figure as an overview for what is required. Later, once you

become proficient at using PRASE, use this figure as a checklist.

With all of this in mind, let's get started.

1-4

Execute the following on either a Sun or Microvax

Setup the commands needed (psun or pvax)
Make a new directory (For an application never instrumented)
Get the data needed (For new application - praseenew)

Edit the Configuration file (If new)
Copy in the code to instrument
It C code - add special comment
Preprocess code (prasec.pre or prase.for.pre)
Move preprocessed code to the Hypercube

Execute the following on an Intel iPSC/1 Hypercube

Make a new directory (For an application never instrumented)

Setup the commands needed (pset)
Get the data needed (For new application - prasenewcube)

Edit the prase-user.h file (It needed)

Edit the PRASEFOR.H file (It a Fortran user - It needed)
Compile your copy of PRASE (pcode.compile)

Compile (not link) your code
Add any needed statements to your makefile
Link you code

Get the Hypercube (getcube)
Set the log file to your own file (cubelog -1 mylog)

Clear the Hypercube for your run

Start the background collection routine (praseclct)
Run your program
Once complete - check the data in prauedata (use pv if needed)

Check your copy of the log file
Move the data back to the Sun/Microvax (use binary transfer)
Find the pid of the background process and kill it

Release the Hypercube

Execute the following on either a Sun or Microvax

Setup the commands needed (peun or pvax)

Change default to the appropriate directory

If you want to analyze the data on your own, go do that now
disregarding the following steps.

Translate the data into Seecube format (prase-trans)

Execute the following only on a Sun

Run the Seecube Resolver (resolve)

Run the Seecube Display program (seecube)

Analyze results

Figure 1.1. User Checklist

1-5

I. Set Up

Once you have computer accouats, and code that runs on a Hypercube, you

may wish to find out more about your program's behavior. When you decide to use

PRASE as an aid to this end, you must begin with some set up steps. The following

steps will set up certain commands that you will need to use PRASE. Since there

are three machines that can be used with PRASE, there axe three set up procedures

that you need to know about.

2.1 Sun Workstation

In your login file, you should include the following command:

alias psun 'source /usr/PRASE/bin/prase-sunsetup'

Whenever you log onto a Sun to use PRASE, you should then type the com-

mand psun to set up other commands that you might need.

If you are beginning to use PRASE for a program that has never been instru-

mented, you should set up a new directory to hold the files you will need. Once the

directory is established, execute the following commands:

% cd newdirectory

% prase.new

The prase..new command will copy in certain files you will need later on.

After you have executed the command, do a directory to get a feel for what has been

copied in. At some point prior to running a preprocessor or the translator, you must

set up the configuration file that was copied into the directory. See the section in

this chapter pertaining to this file.

2-1

2.2 Microvax

In your login file, you should include the following command:

alias pvax 'source /usr/PRASE/bin/prase-vaxsetup'

Whenever you log onto a Microvax to use PRASE, you should then type the

command pvax to set up other commands that you might need.

If you are beginning to use PRASE for a program that has never been instru-

mented, you should set up a new directory to hold the files you will need. Note that

if you are on a system that shares (yellow pages) disks between machines, and you

have already done the following on a Sun Workstation, you should just be able to

change your default directory to the new directory that has already been established.

If, however, there is no new directory established, make that directory and execute

the following commands:

% cd newdirectory

% prasenew

The prase-new command will copy in certain files you will need later on.

After you have executed the command, initiate a directory command to get a feel

for what has been copied in. At some point prior to running a preprocessor or the

translator, you must set up the configuration file that was copied into the directory.

See the section in this chapter pertaining to this file.

2.3 Intel iPSC Hypercube

In your login file, you should include the following command:

alias pset 'source /usr/PRASE/bin/prase-setup'

2-2

Whenever you log onto a Hypercube to use PRASE, you should then type the

command pset to set up other commands that you might need.

If you are beginning to use PRASE for a program that has never been instru-

mented, you should set up a new directory to hold the files you will need. Once the

directory is established, execute the following commands:

% cd newdirectory

% prasenewcube

The prase..newcube command will copy in certain files you will need later

on. It also creates a directory to hold all data that gets collected. This directory

is called prasedata. After you have executed the command, do a directory to get a

feel for what has been copied in.

One file copied is the praseuser.h file. This must be set up by you prior to

using the PRASE collection software. See the sect.on in this chapter pertining to

this file. If you are a Fortran user, you will also need to setup the PRASEFOR.H

file. For more details on this file, see the pertinent section in this chapter.

2.4 The Configuration File

The preprocessors and translator require a configuration file to tell them certain

things about a program. The configuration file MUST be named prase.dg . At this

time, there are five groups of information that should be included in this file. For a

specific explanation of this file and how it is formatted, see the example file found

in Appendix A.

Here, an overview of these five groups of information will be provided to aid

in an understanding of th" file's use. Before discussing the five groups, however,

comments in the file need to be addressed. Comments may be included by placing a

sign in column one of any line. Anything after the # sign is ignored. Lines should

2-3

be limited to 80 characters per line. When you execute the new setup command, a

basic configuration file is copied into your directory. All you should have to do is

change some information to reflect your configuration.

PRASE needs to know which physical nodes on the Hypercube will be running

your program. It also needs to know what the process id (pid) numbers will be. To

convey this information to PRASE, you must enter NODE and PID groups into

the configuration file. You should only enter a node number once. Specific details

on how to enter your node numbers and pid numbers are given in the attachment

by way of comments in an actual configuration file. PRASE will support multiple

processes per node, however, if you choose to run in this mode, you will not be able

to translate the results into Seecube format.

WARNING

If you leave out the PID group(s), the preprocessors will not flag an error.

They will however, set up the run as if no processes were running and results will

be erroneous if the code will even run in this configuration. Make sure that the

PID group(s) are present and correct. Also, using the example configuration file

and directions therein, insure that all groups are correctly formatted.

WARNING

You must insure that tb . PID group(s) contain pids that are numbers in the

appropriate range. Negative values are not allowed but will be accepted by the

preprocessor. Be very careful in building this group. Also, remember that certain

pids are used by PRASE. A valid range for a pid as given in the Intel documentation

is from 0 to 32767. However, 32767 is reserved for use by PRASE. If possible, it

would be best to only use pids with numbers below 32760.

A start time (STARTTIME) group should also be included. This allows a

0 you to tell PRASE at what time to start collecting general data. This can be useful

if you only wish to analyze a certain part of your program. It could also be useful if

2-4

you can not collect all the data for a run (if the amount of data would just be too

much). You must enter an integer number representing the amount of milliseconds

after a run begins that you want PRASE to begin collection.

Another group is the INSTRUMENT group. This is where you tell PRASE

for which Hypercube calls to collect data. The calls for which you can collect data

are: cclose, copen, flick, greenled, probe, recv, recvw, redled, send, sendw, status, and

syslog. Although you can collect data on all of these calls, if you plan to use Seecube,

the only calls that pertain are cclose, copen, recv, recvw, send, sendw, and status.

CAUTION

IF YOU PLAN TO COLLECT DATA ON THE recv HYPERCUBE CALL,

YOU MUST COLLECT DATA ON status CALLS. You must also only allow one

recv per channel or message type to be outstanding at a time and you MUST call

status until a good status is received. The only exception to this rule is if you have

called probe prior to calling the recv service and that you know that a message is

pending when you call recv. If you don't follow these rules, data can get confused

and receives may not show up in the data trace or they may have bad information

pertaining to correlation.

A final group you should know about is the OLDFILENAME group. This is

wl ' you enter the filenames of the files containing the code you want to instrument.

PRASE allows up to 250 files to be preprocessed at once. If you have all of your

subroutines in separate files, this should allow you to put all (or most) of them in one

configuration file. The file names you use should be NO longer than 12 characters

including the extension.

CAUTION

Make sure that the file names are not placed on the same physical line. If they

are, certain names may get ignored or you may experience an error when running a

2-5

preprocessor. Again, refer to the provided configuration file for the proper format of

this group.

WARNING

PRASE will produce a preprocessed file with a slightly different name from

the original. However, if a file already exists with the same name as the new name

being written, the old file will be destroyed. For more information pertaining to the

new file names, refer to Chapter III of this manual.

In way of summary, you need to tell PRASE about these different things re-

quired in the configuration file. By providing this information, the preprocessors

and translator are then able to handle your programs and data in an appropriate

manner.

02.5 The prase.user.h File

As a user of the PRASE data collection routines, you are allowed to tailor

the system to fit your needs. An example of the default prase.user.h file that gets

copied into your directory when you perform set up procedures on the Hypercube

is attached. This file contains comments that will help you set up your file. A brief

overview will be given here.

There are four items that you may set up in this file. You must tell the system

the maximum number of data records to collect (PRASETOTRECTHRESHOLD).

This can be very large if you so choose. You must also stipulate the maximum

number of records PRASE should save in memory prior to dumping data to the host

(PRASEDUMPTHRESHOLD). PRASE will save data up to this threshold value

and then dump that data and begin saving again. Thus, these first two values can

be used in conjunction to provide several types of monitoring environments. If your

program is aborting, you can tell PRASE to dump after every record (which will

hopefully give you some clues as to the problem). This distorts the behavior of your

2-6

program greatly but may help to isolate a problem. If the two numbers you enter

in the file are equal, then all your data will be saved in memory so that dumps do

not distort the program as much. If a you want to collect lots of data, you can also

adjust the numbers to save quite a bit of data in memory with dumps occurring

periodically.

CAUTION

If you enter a negative value for the maximum number of records to save

(PRASETOTRECTHRESHOLD), no data will be collected.

WARNING

If you enter a value less than or equal to 0 for the maximum number of records

saved prior to a dump (PRASEDUMP-THRESHOLD), you will most likely get an

error when you attempt to compile the prase subroutines using the pcode.compile

command explained later in this manual. Also, if the value entered is too large, you

will also get an error message. The value for 'too large' depends on the size of your

program.

So as not to use up too much memory, you are asked to provide two more

values. These values are used in determining array sizes. You should enter a value

for the maximum number of message types referenced by your program. If a program

sends and receives seven different message types, then the number seven or higher

should be entered. It is a good idea to make the number somewhat larger just in case

you count incorrectly. However, making the number too large takes away memory

from your program. You must also enter the maximum number of processes running

on a single node. If you plan to run two processes on node 0 and one process on all

other nodes, the number entered should be two.

2-7

WARNING

If you are programming in Fortran, and you need to change the value for the

maximum number of processes, you MUST change the value in the PRASE-FOR.H

file as well as changing it in the praseuser.h file. This is somewhat cumbersome but

must be done. The two values in the two different files must be the same. Each value

is used to set up an array. If they differ, funny things can happen (of which were

actually experienced during testing). If the value entered for the maximum number

of processes (pids) is to small, errors are likely to be encountered at compilation

time.

WARNING

If you enter a value that is too small for the maximum number of message

types, the data will contain a value in one of the fields pointing this problem out.

However, the translator will not flag an error and may cause the results to be viewed

using Seecube to be erroneous. Make sure that this number is big enough to cover

all your message types. If a 0 is entered for this value, an error is likely to occur at

either compile time or link time. The error will refer to unresolved externals.

2.6 The PRASE-FOR.H File

There are two values listed in the PRASEFOR.H file but only one should be

changed. Please read the explanation given for the prase.user.h file and heed the

warning. If you change the maximi'm number of pids value in this file, you MUST

also change it in the prase-user.h file.

WARNING

If the value entered for the maximum number of processes (pids) is to small,

errors are likely to be encountered at compilation time.

2-8

2.7 Ezample Flow

The following is an example of the commands on each machine you might use

in a real session. The operating system prompts ara contrived to make it clear as

to what machine you are executing them on. Also, it is assumed that the Microvax

and Sun Workstation share the same directories and data files. Details included in

subsequent chapters of this manual are not included here.

vax% pvax

vax% mkdir newdirectory

vax, cd newdirectory

vax, prase.new

vax, vi prase.cfg (edit the configuration file)

cube% pset

cube% mkdir newcubedir

cube% cd newcubedir

cube% prase.newcube

cube%, vi prase.user.h (edit the user include file)

cube% vi PRASEFOR.H (edit this if a Fortran user

and changed the prase.user.h

file pertaining to max pids)

2-9

sun% psuf

sun% cd newdirectory (since already setup on vax)

If you have already instrumented a piece of code, and then make changes to

it and try again, you will not need to execute the new commands or change the

configuration or user include files. If, however, you desire to make changes to either

of these files, you may then change them to reflect the new situation.

2-10

III. Preprocessing

Once setup is accomplished, you are ready to start using PRASE. The first

part of PRASE for you to exercise, involves the preprocessing facilities provided.

Two preprocessors have been provided; one for programs written in C, and one for

programs written in Ryan-McFarland Fortran. These preprocessors require slightly

different procedures so they will be discussed individually.

The preprocessors may not work correctly if the code provided to them does

not compile without errors. If bad code is given to the preprocessors, results will

be unpredictable. You should run every subroutine that has anything to do with

the application you are attempting to monitor through the preprocessor. If you

have separate files for separate subroutines, each file should be preprocessed. The

preprocessors will take your normal Hypercube calls, and adjust the code so that the

PRASE collection routines will be called in place of the normal Hypercube routines

(the normal Hypercube routines are called by the PRASE collection routines). Only

those calls stipulated in the configuration file will be effected.

3.1 C Preprocessing

There are basically two things you need to do to preprocess a C program.

First, you must add a special comment in the main routine (subroutines should NOT

contain this comment). Second, you must set up the configuration file to reflect your

code and your monitoring requirements. Once these two items are accomplished,

you can run the preprocessor to get code that will collect data.

3-1

The special comment you must add goes in a specific place in the main routine.

This comment is to aid the preprocessor in getting oriented. The comment you should

add is

/*#*$*PRASE BEGIN MAIN*/

The comment MUST be added EXACTLY as you see it here (except that it

may have leading and trailing blanks as desired). If it is not, preprocessing will not

be accomplished correctly.

The comment needs to go after all local declarations in the main procedure

but before any executable code. It should be on a line by itself. The swirly braces

({}) should be only one deep at this point. This means that only the left brace

that opened the main procedure should be active when the comment is added. An

* example follows:

main() (

int x, y, z;
float q, r;
char mychar [25);

/*#$*PRASE BEGIN MAIN*/

xz 5;
y 10;
z 15;

q = (float) x * y * z;

The preprocessor will see this comment and place in the file some initialization

code required by PRASE. It will also begin looking for the end of main so it can

place a call to an ending procedure required by PRASE.

3-2

Once your code is ready, and you have set up the configuration file as previously

discussed, you are ready to preprocess your file. Whether you are on the Microvax

or the Sun, the command is the same. The command you will use was prepared by

the set up script file you should have run when you logged on. The command you

should now issue is:

% prasecpre

The preprocessor should tell you what it is doing as it does it. The input file

name stipulated in the configuration file should end with a .c extension and be no

longer than 12 characters including the extension. The preprocessor output file will

have a .p.c extension in its place. This will contain the preprocessed code. Scan the

new code to get a feel for what PRASE is doing with your code.

If you have problems, first make sure you have code that compiles. If you feel

that you have found a legitimate problem, please report it. It is very difficult to

consider every possible combination of valid code statements.

3.2 Fortran Preprocessing

Unlike the C preprocessor, the Fortran preprocessor does not require a user to

enter a special comment. All you need to do is set up your configuration file and go.

There are some known situations that the preprocessor will not support. One

such item is in reference to statement function statements as outlined in the Ryan-

McFarland Fortran manual. If you use this Fortran feature in the main program of

your Fortran code, the preprocessor will place executable code prior to the statement

(which is incorrect syntax). This is an unsupported feature at this time. If you

wish to edit the preprocessed code, however, you may fix the flow of statements by

moving your statement function statement prior to the added PRASE code. This

only applys to the main routine. Statement function statements in subroutines are

not a problem.

3-3

Also, comment lines found in the middle of a call that is continued are not

supported. For example:

CALL SYSLOG(MYPIDo,

C Comment in between start and end of a call that is continued

* mymsgbuf)

Another unsupported feature pertains to logical if statements (this is a state-

ment with no THEN part). If you have a logical if statement, with the statement

portion being something you want to instrument, the preprocessor will not set up

the instrumentation code. Other logical if constructs (not containing a call you want

to instrument) should be fine. An example follows:

IF (X .GT. 77) CALL SYSLOG(Mv-IDo, MYMSGBUF)

A logical if statement with a STOP after the if is supported. If you have a

situation as in the example, you should change it to an if-then type construct so that

the preprocessor will correctly handle the call that you wish to instrument. Another

problem, that also pertains to if statements, can be seen in the following example:

IF (STATUS(CI) .EQ. 1) GOTO 20

The problem lies with the call to status that is embedded in the if statement.

Although you may have set up the configuration file so that this should get instru-

mented, it will not. You should call status prior to the if statment, placing the

returned value in a variable, and then test the variable in the if statement.

3-4

Now, on to using the Fortran preprocessor. To execute the program, enter the

following command:

% praseforpre

The program should keep you abreast of its actions. Once complete, the output

file will be in a file with a .p.f extension (the original file name should be no longer

than 12 characters including the extension). The original extension should have been

of the form .f. Peruse the code to ge t a feel for how it is different.

Again, if you feel you have legitimate code, but the preprocessor seems to be

messing you up; report the problem. With your help, the system can get better.

Once you have preprocessed your code, copy it to the Hypercube of your choice

in preparation for actually collecting the data.

3.3 Example Flow

The following is an example of the commands on each machine you might use

in a real session. The operating system prompts are contrived to make it clear as

to what machine you are executing them on. Also, it is assumed that the Microvax

and Sun Workstation share the same directories and data files. Details included in

the set up chapter have been included here. Details from subsequent chapters are

not included.

vax% pvaX
vax, mkdir newdirectory
vax%. cd newdirectory
vax% prase-new
vax% vi prase.cfg (edit the configuration file)
vax, cp ../oldcode . (get the old code into the

new directory)
vax. vi oldcode.c (if C only to add special comment

to the main routine only)
vax prase-c-pre (or prase-for-pre for Fortran)

3-5

vax%. ftp mem.ecube (You can use rcp if you like,
you just need to now get your
code to a Hypercube)

cube% pset
cube% mkdir newcubedir
cube%. cd newcubedir
cube% prase-newcube
cube% vi praseuser.h (edit the user include file)
cubeY vi PRASEFOR.H (edit this if a Fortran user

and changed the praseuser.h

file)

sun. psun
sun%. cd newdirectory (since already setup on Vax)

The above includes all steps for code that was not previously instrumented. If

you have already instrumented a piece of code, and then make changes to it and try

again; you will not need to execute the new commands or change the configuration

or user include files.

3.-4 Things You Should Know

The preprocessor for Fortran allows access to the PRASE subroutines by pro-

viding calls to the C collection routines. Several variables are placed in the header

of the main routine and the subroutines. One problem you might run into is if you

are also trying to call C routines. The preprocessor will place new declarations into

your file for CALLC, CSEG, etc. This means that if you have already defined them,

you will get an error at compilation time. To alleviate this problem, simply edit the

preprocessed file with the problem and delete one of the instances of the declaration

only in the routine that has the problem.

3-6

If you experience any errors such as unresolved externals or errors and warnings,

you should first look at the praseuser.h and PRASEYORH file. Make sure that

the numbers are correct in these files -(for more information on these two files, see the

discussion in this manual for each file). Also, you should make sure you are linking

with everything that you need.

Another item you must handle is in reference to gathering data pertaining to

recv calls (not recvw). When a recv is issued, the data in the return parameters is

not always valid. You MUST also instrument status calls when you instrument recv

calls. There is only one exception to this, if you never call a recv until you know

data is available (this can be done using probe), then you do not need to gather data

on status calls. However, if probe is not used in this way, you mast gather data on

status calls and actually call status in your program until it tells you that the data is

valid. You may NOT issue another recv for the same channel or message type until

the previous one is clear (you may issue a recv for a different channel or message

type but must then call status for this recv as well).

You must do all this so that the PRASE data collection routines record the

correct data. If this is not done, then the data will be incorrect and could lead to

erroneous results being given to you.

3-7

IV. Data Collection

To collect data pertaining to your program, you should have already prepro-

cessed your code. Once on the Hypercube, you should set up a new directory and

start out with just your code being present. Since you are planning to use PRASE,

you should have already executed the pset command which sets up certain aliases

for your use.

Once you are in your new directory with the preprocessed code file, you need

to copy certain files into your area. To do this (for a new piece of code you want to

monitor), execute the following command:

% prasenewcube

This will copy several files into your directory as well as create a subdirectory

for storing the collected data. You now have your own copy of the PRASE data

collection subroutines. This allows you, as the user, to tailor PRASE to whatever

configuration you like.

You now should edit the prase.user.h file and change it as discussed previously.

If you are using Fortran code, you should also edit the PRASE.FOR.H file to make

sure that the maximum pids parameter agrees with what is in the prase-user.h file.

IT IS VERY IMPORTANT THAT THESE TWO FILES AGREE.

Once these two files are in order, you are ready to compile your own copy of

the PRASE collection subroutines. To do this, you should execute the following

command:

%. pcode-compile

Now you should compile your code. If you are compiling C source routines, you

should compile using the Huge (-Alhu) switch and the -K switch (see the XENIX

4-1

286 Programmer's Guide Chapter 2 - this switch "Removes stack probes from a

program" which are "used to detect stack overflow on entry to program routines").

The Huge switch adds some extra abilities for the code to cross 64K byte boundaries.

This is important for the subroutines to work properly.

CAUTION

If you do not use the -K option, you may get an error at load (link) time

referring to a procedure that apparently has something to do with the stack.

If you are compiling Fortran code, you should use the -bhkze options and the

-w option. The -w option suppresses warning messages. If you compile a prepro-

cessed file without the -w option, several warnings will appear because of the C

calling routines. These may be ignored as long as they pertain to different types of

arguments or different numbers of arguments for the calls to C. Therefore, unless

you need to see warnings, it is much cleaner to use the -w option.

Next comes linking. You more than likely already have a makefile with certain

libraries being linked. Here is a list of libraries you should link with. You may,

however, experiment with these by deleting one at a time to see if in fact they are

required.

For C you should try

/lib/Lseg.o

/usr/ipsc/lib/LcrtnO.o

prase code.o (definitely needed)

your stuff

/usr/ipsc/lib/Llibcnode. a

4-2

For Fortran you should try

/lib/Lseg.o

/usr/ipsc/lib/LcrtnO o

prase code.o (definitely needed)

your stuff

/usr/ipsc/lib/Llibcnode. a

/usr/ipsc/lib/Llibfnode. a

Once the link is done you are almost ready to go. Next, you should get the

cube for use by using the getcube command. The very next command should be

a cubelog command so that log messages will go to your personal file. This is

important because PRASE may write an error message to syslog that you should

see. After this, you should load the cube for the appropriate dimensions.

PRASE dumps data to a program that runs in the background on the host.

This is why data can be dumped at any time during a run. The host process sits

waiting for information from the collection subroutines and when data does arrive,

writes it to disk. You must start this routine AFTER the load (this is the load

for loading the appropriate dimensions and resetting the Hypercube nodes, not for

loading a user's code) has been accomplished. You MUST start this while your

default directory is the new directory that you created. The routine will attempt

to write its data to a subdirectory call prase-data (this was built for you by the

prase.newcube command).

To start this program you should execute the following command:

% praseclct

At this point you are now free to run your code by either loading it directly or

starting a host process that loads it for you. Once the run is complete (you should

4-3

watch the lights or give PRASE some time to finish dumping the data that was

collected), you should have data files in the praseodata directory. There should be

one file for each process that ran. The file names have the format n#p$ where #

stands for the node number and the $ stands for the process id (pid) of the process

that sent the data to the host. The data is in binary form. You may, however, view

this data by using a command set up for you called pv. To look at the data simply

type pv and the directory and file name. For example, the command

% pv prasedata/nOpO I more

would display the data collected on node 0 pid 0 and pipe the output through

more so you can look at it a page at a time. If you wish to get an ascii copy of this

data, simply type the following

% pv prase-data/nOpO > x

with the ascii data being placed in file x.

If you wish to automatically manipulate this data (for instance translating and

using Seecube), you must get it back to the Sun/Microvax environment. To do this

you can use either rcp or ftp. If you use ftp, you MUST BE SURE TO PUT FTP

INTO BINARY MODE PRIOR TO PASSING THE FILES. If you do not, erroneous

results are likely. To put ftp into binary mode, simple type binary once you have

an ftp prompt.

Before you release the cube, you should stop the host collection routine. You

should execute a ps -a, look for the pid of the pra-eclct program, and then issue a

kill -9 pid command. This will stop the collection routine. You may then release

the cube.

Before you log out, you should remember to check the log file you set up with

cubelog. Look for any errors initiated by PRASE. There are two error messages

4-4

you may see that are written by PRASE and a third that is provided by the system.

The first is:

PRASE NOTE: Ending with an outstanding recv

The error message means that a recv was issued but PRASE did not recognize

a completion for the recv. This could happen for a couple of reasons. First, your

program may continue to issue recv services not knowing when program completion

occurs. In this case, if one recv was left open, all might be just fine. In another

case, a recv may have completed but PRASE did not pick up the completion. This

could happen if you neglected to call status after every recv was issued. Remember

that you must continue to call the status service for the open recv until the system

provides a status that the message has been received. You should determine which

case you are in. The former is a fine condition that should not cause a problem in

analyzing your data. The latter, however, means that the data could be corrupted

because one recv somewhere did not register the appropriate ending. Once you issue

a recv for a particular message type or channel, you should not issue another until

the one issued clears (you can know when the message clears by calling status until

the appropriate value is returned).

The second error message you may see is:

PRASE ERROR: Too many outstanding recv calls

This message means that you have exceeded the maximum number of out-

standing recv calls that you can have at one time. The current maximum is 20. The

impact of this message is that the data can no longer be trusted as valid.

4-5

The system error message will be something like the following:

Warning: Spilling data segment from LBX to Node board

Warning: Spilling data segment from LBX to Node board

Warning: Spilling data segment from LBX to Node board

Warning: Spilling data segment from LBX to Node board

Loader: Out of memory on node and LBX boards.

This means that you axe trying to use too much memory. This could happen

for different reasons. You may have large data structures and by adding the in-

strumentation code have exceeded available space. You may have asked to save too

many records in the trace (as setup in the prase-user.h file). Each data record takes

32 bytes. To save space, lower the PRASEDUMP.THRESHOLD value. This will

save you 32 bytes for each integer value that you lower it.

If at some point you reload the cube or issue a loadkill command, and the

collection routine is running, it will abort with a message something like

call: recvmsg pid: 32767 error: Channel went bad

Simply restart the collection routine (if needed) prior to reloading your code

onto the Hypercube.

4.1 Example Flow

The following is an example of the commands on the Hypercube that you might

see in a real session.

.pset
% mkdir newcubedir
%. cd newcubedir
% prase.newcube
%. vi prase-user.h

4-6

% vi PRASEFOR.H (for Fortran users who changed
prase.user. h)

% pcode.compile
% rufort -bhkze -v or cc -Alhu -K (compile your code)
% vi makefile (add any necessary object or library

modules to the make)
% make mycode (link the code to produce an executable)
% getcube
% cubelog -1 mylog

% load -c 5 (load the cube with some appropriate

command)
% praseclct

% somehow run your program
% pv prase-data/nSpo (view the data in ascii for this

particular node and pid)

%. more mylog (look for PRASE errors)

%. ftp sunworkstation (use binary - just type it in at

the ftp prompt) (send your data

files back)
% ps -a (look for pid of prase-clct)
% kill -9 pid
% relcube

0
4-7

V. Translation

Now that you have collected data, you may want to look at that data using

the graphical routines provided by Seecube. To do this, you must first translate the

PRASE data into Seecube data. Only data that was collected in an environment

where single processes were running on each node can be translated and used. To use

the translation program, you must either be on a Sun or a Microvax that supports

PRASE.

In preparation, you must have the configuration file you used for preprocessing,

and the data files collected on the Hypercube. You should be in the directory origi-

nally made for the PRASE session (because eventually there are some files Seecube

will need).

n Once you are in the right place with the right stuff, enter the following com-

% prase.trans

The translator should tell you what it is doing. The ultimate output is a file

call human which is used by Seecube. All but the necessary records are discarded in

the translation phase to the human file. The translator is really only interested in

message passing data records. The non-applicable records are filtered out.

The translator correlates sends from one process to receives on another process.

Essentially, it tries to match a send from one process to the corresponding receive.

If it cannot do this, it will tell you at the end of the run how many records were not

correlated.

This could happen for several reasons. First, if you start data collection at a

time other than timc 0 (as set forth in the configuration il"), a send may not be

recorded whereas the corresponding receive might. Thus, we have a situation where

5-1

we will not correlate records. A second situation would occur if you used up your

quota of records prior to the end of a run. This means one end of the send-receive

might get recorded while the other might not. The third situation in which this

could occur is if the data is bad. If you suspect bad data, try using the pv command

on the Hypercubes to look at what you got.

5-2

VI. Using Seecube

To understand the workings of Seecube better, you should read the Seecube

User's Manual. Here we will present what you will need to get the data in the right

format and to get the graphical displays going. To use the Seecube software, you

must be on a Sun workstation.

Once translation has occurred, and you have a file called human; you are

ready to use the Seecube software. Prior to the graphical displays, however, you

must execute the Seecube Resolver. This command has been set up for you by the

setup procedure. To execute the Resolver, do the following

% resolve

You will get several lines of printout from the program. Ultimately, you should

have some files called interlaced (some with file extensions). Previously brought in

are also some files that Seecube will use. They are the context file, and the files

found in the colors and clumps directories.

CAUTION

It appears that the file called human can get too big to be handled by the

resolver. You should be aware of this possibility as you run the Resolver.

To use the graphical displays, simply enter the following

% seecube

You will be presented with the Seecube control panel. From here, you should

refer to the Seecube User's Manual for specifics pertaining to the possible displays.

if you have redefined the delete key in your login file, you may have trouble

changing parameters in Scecube. This is important if you desire to change certain

values for some of the displays.

6-1

CAUTION

Seecube allows a user to specify how many milliseconds are advanced every

time the displays are updated. If this value is set to anything other than one (which

is highly likely and desirable), when the clock gets near the end of the data, it will

not complete the run unless it can advance to exactly the correct value for the last

millisecond in the run. You need to be aware of this when looking at the end of a

run, because you might think (as the author did once) that messages had not been

handled at the end of the run. Just set the slider for this value to one at the end

of the run so that the displays can complete. Messages could also appear to be left

on queue at the end of a run if PRASE did not have enough room to collect all the

data for an entire run.

CAUTION

Occasionally, because of the times recorded in the trace, it may appear that a

message is sent in zero or negative time. It appears to be the case that if the times

reflect this situation, the Seecube displays will not graphically show the presence of

the message.

6-2

VII. Collecting Your Own Data

PRASE provides utilities that allow the user to collect data of his own that is

autonomous from the Hypercube calls. You can store different variables of differing

data types into the PRASE data trace. This will hopefLily give you some idea of

how certain variables are changing over time and how they compare across processes

and nodes.

To actually collect this data, you must place the calls into your code by hand.

No automatic placement is supported at this time. The next two sections give the

syntax you will need to introduce these calls into your program. Once you have added

the calls, you should then run your code through the appropriate preprocessor to

complete the process of preparing to collect data.

7.1 C Support and Syntax

Following the example in the Intel manuals, the calls to each of the routines

will be provided with any declarations that are pertinent.

" Integer Variables

int myvar;

PRASEMARKINT (&myvar);

" Long Variables

long mylongvar;

PRASEMARKLONG (kmylongvar);

7-1

* Short Variables

short myshortvar;

PRASEMARKSHORT (&myshortvar);

* Float Variables

float myfloatvar;

PRASEMARKFLOAT (&myfloatvar);

* Double Variables

Double mydoublevar;

PRASEMARKDOUBLE(&mydoublevar);

* Character Variables

char mycharvar[13J;

PRASEKARKCHAR(mycharvar);

Although you can send a very large character string to the character routine,

only the first 13 characters will be saved. Be aware that if you have bad data in part

of the variable, that it may get written to the trace.

CAUTION

Do not pass the PRASEMARKCHAR a variable that is one character in length

(this would mean that the variable was not a pointer and thus might cause erroneous

results).

7-2

7.2 Fortran Support and Syntax

Following the example in the Intel manuals, the calls to each of the routines

will be provided with any declarations that are pertinent.

" Integer*2 Variables

INTEGER*2 INT2VAR, RESULT

EXTERNAL PRASEMARKINT

RESULT - CALLC(PRASEMARKINT, 2,

* COFF(INT2VAR), CSEG(INT2VAR))

" Integer*4 Variables

INTEGER*2 RESULT

INTEGER*4 INT4VAR

EXTERNAL PRASEMARKLONG

RESULT = CALLC (PRASEMARKLONG, 2,

* COFF(INT4VAR), CSEG(INT4VAR))

" Real*4 Variables

INTEGER*2 RESULT

REAL*4 R4VAR

EXTERNAL PRASEMARKFLOAT

RESULT a CALLC(PRASEMARKFLOAT, 2,

* COFF(R4VAR), CSEG(R4VAR))

7-3

R Ra*8 Variables

INTEGER*2 RESULT

REAL*8 R8VAR

EXTERNAL PRASEMARKDOUBLE

RESULT - CALLC(PRASEMARKDOUBLE, 2,

* COFF (R8VAR), CSEG (R8VAR))

* Character Variables

INTEGER*2 RESULT

CHARACTER*13 CHVAR

EXTERNAL PRASEKARKCHAR

RESULT - CALLC(PRASEARKCHAR, 2,

CCHOFF(CHVAR), CCHSEG(CHVAR))

Notice the difference in the character calling sequence. Instead of COFF and

CSEG, CCHOFF and CCHSEG are used. Although you can send a very large

character string to the routine, only the first 13 characters will be saved.

CAUTION

Do not pass the PRASEMARKCHAR a variable that is one character in length

(data may be erroneous). You may pass a single character in a character variable

with more than one character present. Be aware that if you have bad data in part

of the variable that that data may be written to the trace.

WARNING

If you neglect to add the EXTERNAL statement as shown in the examples

above, you are likely to get exception errors when you attempt to run your code.

7-4

VIII. Very Important! Please Read

There are certain things that as a user of PRASE should know before using

the software. This chapter will list these items. Please read them all, it could save

you some grief and erroneous results. The items are not in any specific order, they

are just here for your information.

" Number of Channels - PRASE opens and uses a channel to communicate with

the host collection routine. This means that there will be one less channel

available for your general use.

" Reserved Message Types - PRASE uses two message types for specific purposes.

You should NOT use these two types. They are 32766 and 32767.

" Reserved Pid for copen - The collection routine that runs in the background on

the host opens a channel using the pid number 32767. Then, when processes

wish to communicate with it, they simply send to that pid. You MUST not

use this pid number.

" Configuration File Correctness - Make sure that you include all required groups

correctly (as outlined in the example configuration file provided). If required

items are left out, unusual things can happen causing errors or erroneous results

to occur.

" Message Loss Assumption - When translation is accomplished, correlation is

done based on a count in the record. The count gets updated as messages

come into a node. Separate counts are kept for each different message type

coming from a specific node and pid. The counts are kept on each node and

should correspond between send and receive records for a specific message.

If a message was lost, these counts would get out of phase and would cause

records to correspond incorrectly. A basic assumption has been made that the

Hypercube will not lose a message once it has been given to the system.

8-1

" Speed Degradation - Counters are kept for each message type that you use.

The more message types that you have, the longer it takes PRASE to find

and update the counter. Thus, with more message types, you can expect more

degradation in speed.

" Multiple Receives - If you plan to issue multiple receives without wait (recv) at

the same time, you MUST use different variable names for the returned values

and you MUST call status for each until a good status is returned. Remember,

you should not have multiple receives outstanding for the same channel or

message type.

" Fortran Columns 73 to 80 - In some cases, the data in these columns may

not show up in the preprocessed code. Since this data is not executable, this

should not cause an error.

" Filename lengths - Original file names entered in the configuration file should

be no longer than 12 characters including the extension. This leaves room for

the preprocessor to add two characters to the name and still have the name be

correct on the Hypercube.

" Host procedures loading code on the Hypercubes - You may want to load your

node programs on the Hypercubes using a host program rather than loading

them directly to the nodes. The name of the file to load to the nodes might

be compiled in the code. There are several ways to handle this problem. You

can move the executable to the old name, or change your code to reflect the

change.

" Killing the node processes - An example program provided by Intel was found

to stop the node processes by issuing a loadkill from the host rather than

having them run to completion. In this case, some or all of the data collected

may not get dumped. If you are doing this be aware of the situation. You can

lower the dump threshold so that some data will be received or you can modify

your program to stop in a different way.

8-2

9 Using -ezit - If you are using .exit in C, when instrumentation occurs, this

will get changed to a prase.exit routine. This is so that we can end PRASE

correctly prior to exiting. This is also handled with a call to exit. However,

the replacement routine for .exit does not call -exit after the PRASE ending is

complete. It instead calls exit. exit and -exit have different functions.

* Begin and End Times for send - When a send (not sendw) service is instru-

mented, the times recorded mean something different than what you might

expect or what might be shown on Seecube. For a send, a begin time and an

end time get collected. The end time is the time after the send call completes,

NOT the time the buffer becomes free. When using Seecube, it might appear

that a message is all written when in fact it was still in the process of writing.

When using Seecube, the display should be interpreted in light of the way the

PRASE data was collected (if in fact you have instrumented the send service).

* recv Problem - When a recv is issued, if a message is not ready for receipt, then

the data instrumentation record does not get recorded at that time. However,

the begin time does get saved internally. If you call recv, and find that it has

not completed, you MUST not call send, sendw, recvw, copen, or cclose prior

to the completion of this event. If you do, then the trace shows times out

of order. This is only a problem if you plan to use Seecube. If you decide

to do you own data analysis, you must realize that the time ordering is not

necessarily maintained when calling recv. This means that the begin time of

one record may be later than the begin time of the next record.

You may call another recv (only on a different channel with a different message

type and different variable names), however you should not call status for the

second recv issued until the first recv issued clears.

You can detect this problem by scanning the output from the pv utility on the

Hypercube. If a time is out of order in a trace, then the results you will see on

Seecube will probably be erroneous. If however, you are planning to analyze

8-3

the data separate from Seecube, then you should proceed with your analysis

with the knowledge that times may be out of order. Currently, there is no fix

other than the guidelines given above and there is no known way to identify

the problem other than by using the pv utility.

" Count Field Errors - As you use the pv command, you may find the count field

containing negative numbers. These numbers mean certain things. When the

maximum number of message types is smaller than the number of types a user

attempts to use, there is a problem. The only indication of the error is in the

trace itself. A value of -99 is placed in the trace in the count field. This was

by design. However, if a user does not examine the trace, and just processes

the data, he is likely to get erroneous results. At some point the syslog should

contain an error message for this. However, at this time, you should make sure

that the number you enter in the prase-user.h file is big enough to encompass

all possible message types.

A -999 or -9999 means that PRASE probably has some internal problems. If

one of these counts are received, the data is most likely invalid and should not

be used for analysis.

" Dangerous cc Option - There is an option listed in the XENIX(XENIX is

a trademark of Microsoft Corporation) 286 Programmer's Guide for cc that

"Reverses the word order for long types (this was found on page B-23 of that

guide)." Although never attempted, this option will probably render the data

files useless if translation is attempted. This option should be used with ex-

treme caution if at all. The option is -Mb.

" Instantaneous Events - Occasionally, because of the times recorded in the trace,

it may appear that a message is sent in zero or negative time. It appears to be

the case that if the times reflect this situation, the Seecube displays will not

* graphically show the presence of the message.

8-4

O Global Sends - The Hypercube supports a global send capability where a user

can issue one send (or sendw) to send a message to a subcube or the entire

Hypercube. PRASE does not support this function. Using this function while

also using PRASE may cause data to be erroneous. You should not attempt

this.

" Configuration File Updates - If you have an existing piece uf code that has

been instrumented, and you change the configuration file, you must begin the

PRASE process again at the preprocessing step.

" Instrumenting Fortran calls to syslog - If you have something like the following:

CALL SYSLOG(mypid0,'my msg')

The message portion will show up in the syslog with all blanks removed and

all letters being capitalized. This is because the Fortran preprocessor changes

things around so that a variable can be passed instead of a character group

such as illustrated.

" Errors - If you experience any errors such as unresolved externals or errors and

warnings, you should first look at the prase-user.h and PRASE-FOR.H file.

Also, you should make sure you are linking with everything that you need.

8-5

Appendix A. Configuration File Example

A-1

The following is an example of a configuration file that could actually be used.

There are lots of comments provided to aid in properly setting up your own configu-

ration file. When you do the initial setup to use PRASE, a copy (without all of these

comments) of a configuration file will be placed in your default directory. Following

the guidelines given here, should help you in getting your configuration file right.

Example: prase.cfg

This is a sample configuration file used by the Parallel
Resource Analysis Software Environment (PRASE). The rules
* for building your own config file as well as examples are
included. Please read all of what is contained in this
file prior to trying any modifications.
*

* This configuration file was written by Capt Mark Kahl
*

* The prase.cfg file is used by three programs within the
9 PRASE system. The preprocessors use the information in
* this file to build a preprocessed version of a user's code.
This file tells the preprocessors what nodes will be
running code for this run, how many processes (and their
pid numbers) will be running on each node, what calls the
* user wishes to instrument, the file names to preprocess,
* and finally, which libraries or object modules are needed
to link with other than the defaults provided by the
preprocessor (the libraries part is not currently
* implemented). Another program, which translates PRASE
* collected data into Seecube (copyrighted by Alva Couch
at Tufts University in Massachusetts) format,
uses this file only for the node and pid information.
*

It is IMPORTANT to use the same configuration file
throughout the preprocessing, data collection, and
translation phases of a PRASE session.
*
*@ 8,
* THE FOLLOWING PROVIDES INFORMATION PERTAINING TO SPECIFIC

A-2

S FILE FORMAT. PLEASE FOLLOW THE RULES EXPLICITLY.
8
8

------- > COMMENTS AND BLANK LINES:
8

* This is a comment line since it starts with a pound sign.
8 Comments may only fit onto one line. If you want to say
* more, go to the next line. DO NOT let a comment line wrap
8 by itself.
8

8 WARNING: You can leave blank lines but they must have
8 nothing on them. This means not even blanks
* can be on the lines. Suggestion: Don't use
* blank lines.
8

8 DO NOT ALLOW ANY TYPE OF LINE TO WRAP AROUND.
8
8

8------- > GROUPS:

8 Each configuration file should contain what are called
8 "groups" of information. Each group has a specific
* purpose and MUST be formatted by following certain rules.
* Examples of each group are provided below. Each of these
groups MUST be present (except for the LIBRARY group
8 which is currently not used) prior to beginning a PRASE
session so read the instructions and make up your own file.
#
*
8

------- > NODE GROUP:

* The following deals with NODE groups. Its purpose is to
* convey to the PRASE programs which nodes are running code.
* The information can be put together into "like" groups,
S or listed node by node.
* Here are the format rules:
8

* 1. Begin the group by placing the word NODE on a single
8 line starting the word in column 1 and insuring that
S all capital letters are used. (Remember: follow the

A-3

* directions exactly)
* 2. Nodes can be clumped in groups if each node in the

* group is running the same number of processes with
* the same pid numbers. For example: If nodes 0
S through 4 are running one process each with the same
S pid number of 7, then these can be placed in one
* group. However, if nodes, 1, 3, 5, and 7 are alike
S but 2, 4, and 6 are different from the odd nodes,
*then no grouping can be done. What we are saying
Sis that to group like nodes, they must be in order.
5 3. So, in step 1 we put the word NODE in columns 1
*through 4; now, on the next line, we place the
*beginning node number for this group of nodes.
S 4. On the next line we put the ending node number
Sfor this group. This number can be the same as the
9 beginning node number (saying that this group

8 pertains to only one node), but cannot be smaller
* than the beginning node number.

5. Only list a single node once. If you list it more
S than once, only the last listing will be accepted.
8 6. Once a node group is completed, a PID group MUST
follow immediately.
S

* Now, here is an example of a node group. We will leave
* the comment in front of the group. If you really wanted
* this grouping, all you would need to do is delete the
9 comment marking (insuring that the name NODE began in
* column 1). This example says that this group pertains
* to nodes 0 through 10 or eleven nodes total.

NODE
* 0 begin node
* 10 end node
*
#

------- > PID GROUP:

* Next let's give rules and an example for a PID group.
* First, the rules.
*

* 1. The first thing you must do for a PID group is
*insure that there is a NODE group as the group

A-4

immediately prior to the PID group. The PID
group goes hand in hand with the NODE group.
The PIDs listed in this group are the pids that
will go along with the NODE group. Thus, the
PIDs listed below will be valid for the NODES
listed above.
2. Now, put the PID group identifier on the next
line and make sure it is in capital letters and
starts in column 1.
3. On the next line, you should put the number of
processes that will run on each individual node
(each process must have its own unique pid, thus
we say pids almost synonymously with process).
4. If you wanted to run three separate processes on
the nodes listed in the previous node group, you
would put a 3 in the position for number of pids.
This number must be at least 1 and less than or
equal to 20.
5. The next line(s) contain the actual pids that
you plan to run on the nodes. If you have ten or
less pids running on a node, then all the pids
should be placed on one line with blanks
$ separating them.
S 6. If you plan to run more than 10 pids on a node,
th f-.rst 10 must go on the first line and the
$ remainder of the pids should go on a second line.
#
* EXAMPLE:
#

*NODE
0 begin node
* 10 end node

#PID
12 number of pids to run on the nodes above
0 10 20 35 44 127 329 451 77 1054 These are the first 10
S 88 12453 These are the last 2
#
S

S The above example has nodes 0 through 10 running 12
S processes each with the twelve pid numbers being the
pids of the processes running cn each node.

A-5

* NOTE: IF YOU PLAN TO RUh THE DATA YOU COLLECT THROUGH
THE SEECUBE SOFTWARE, THEN YOU SHOULD ONLY BE
RUNNING 1 PID PER NODE.
S

S The following is the actual node pid configuration
for this run.
#

NODE
0
31

PID
I

0
#
#
#
------- > INSTRUMENT GROUP:

#

The next section we will discuss pertains to the
* calls that the user would like to instrument. You
may want to gather data just on calls to sendw and
recvw hypercube calls. Or, you may want to
* determine how often you call the greenled service
* so you may just want to collect data on that. Or,
* you may want to collect data on everything there
is to collect data on (or even some subset). This
section deals with telling the preprocessor which
items ycu want to collect data on.
#

Before getting into format and specific rules,
* let's give a list of all the calls that you can
* instrument. The following list is in alphabetical
order.
#

CCLOSE, COPEN, FLICK, GREENLED, PROBE, RECV,
RECVW, REDLED, SEND, SENDW, STATUS, SYSLOG
#

The above calls are the only hypercube calls that
can be instrumented. What this all means is that
* the users original calls to the routines chosen
S will be replaced with calls to data gathering

A-6

* routines that collect data about the actual
S hypercube call. Other routines may be called to
* collect data but must be entered manually.
U

Note that if you are instrumenting data to
S ultimately play back on the Seecube display
software, you should instrument the COPEN and
S CCLOSE calls as well as sends and receives.
#

* Now we can describe the new group. The group
* will contain group the name INSTRUMENT to start.
* With all this in mind, let's list the rules.
#

* 1. The group is identified by placing the
* word INSTRUMENT in column 1 of a line.
8 Make sure it is all in caps.
S 2. The next line should contain a number
signifying the number of items you have
chosen to instrument.
* 3. On subsequent lines, each of the calls
8 you wish to instrument should be listed,
* one per line, in caps. The names MUST
start in column 1.
U

* NOTE: When you say you want to instrument the
8 call to RECVW, then everywhere in the
instrumented piece of code that the call
U to RECVW appears, it should be replaced
U with a call to the data gathering software
U (unless it is in an unsupported position
in the code - see the User's Manual for
* details which will in turn call the RECVW
function for the user).
8

S EXAMPLE: Let's say you want to gather data on all
message passing events. Thus, you want to
know about every copen, cclose, send, sendw,
recv, recvw, and status (you should instrument
this if you instrument recv - there is one
exception, to this so see the User's Manual).
You also decide to look at how SYSLOG calls
affect the whole situation. The following

A-7

example shovs how to do this.

*INSTRUMENT

S 8 Number of calls to instrument
#COPEN

#CCLOSE
*SEND
#SENDW
#RECV
#RECVW

#STATUS

#SYSLOG
8
8
8

* With that in mind, here is where you should enter
the actual commands for the preprocessor.
8

8

INSTRUMENT
12 Number of calls to instrument

CCLOSE
COPEN
FLICK
GREENLED
PROBE
RECV
RECVW
REDLED
SEND
SENDW
STATUS
SYSLOG
8
*
#
8
------- > LIBRARY GROUP:

THE LIBRARIES OPTION AND MAKEFILE OPTION ARE NOT
CURRENTLY IMPLEMENTED! ! I'

A-8

* Now we come to the libraries group. This group

S denotes all the libraries and object modules
S besides the defaults that a user wants to link
with. This needs to be put in here because the
S preprocessor will build an appropriate makefile
(not currently implemented) for the preprocessed

code.
S

Now for the rules.
8

1. Enter the group name LIBRARY on the first

line of the group and make sure it starts

in column i and is in capital letters.
2. On the next line, enter the number of
additional libraries/object modules you
wish to add. The maximum is currently 20.
3. On subsequent lines add ONE (and only one
S per line) entry per line. Each line should
contain the full path name of the library
or object module.

S 4. If you do not need to add any additional

* libraries or object modules, you may leave
8 this group out of your configuration file.
8
S

Now for an example.
8

*LIBRARY
3
#/usr/eng/mkahl/obj ect s/code .o
#/usr/ttt/user/x. a
#/usr/ttt/ttt/ttt.o
#
S
S The following is a real group.
S

LIBRARY
3

/usr/eng/mkahl/thesis/code/sunada/x .o
/usr/eng/mkahl/thesis/code/sunada/lib.a
/usr/eng/mkahl/thesis/code/try.o

A-9

@*
8

8

- ----- > STAR TrIME GROUP:
#

* The following group tells the prase code when
8 to start recording data. The value must be
* given in milliseconds (no decimal points - just
* an integer). The PRASE software will not start
* logging general data until on or after the time
* has been reached. The time is a relative time
from the beginning of the run. Let's list the
* rules and then give an example.
#

* 1. On the first line, starting in column 1,
* place the group name STARTTIME (it must
8 be in caps).
8 2. On the very next line, include the start
* time in milliseconds that you want to
8 start recording data approximately relative
to the time that the code starts to run on
8 the Hypercube nodes.
8

* Example:
8

8STARTTIME
1500
8

* The above example would cause recording to start
* approximately 1.5 seconds into the run.
*
8

STARTTIME
700

X8
*
*

------- > OLDFILENAME GROUP:
*

This next group holds the input file name(s).
S This group is called the OLDFILENAME group and

A-10

* provides the preprocessor with the input name(s)

* of the code to preprocess.

* The rules are as follows.
8

* 1. Enter the name OLDFILENAME on the first line
* of the group insuring that it is in CAPS and
* starts in column 1.
S 2. On the next line, enter the number of files
* to process. This should equal the number of
8 filenames that follow. The current maximum
is 250.
3. On subsequent lines, enter the filename(s) you
wish to use for input. Make sure you start
* the name(s) in column 1.
8 4. Each name MUST come on the very next line with
S no comments or blank lines in between. Each
* name MUST start in column 1. DO NOT
S INCLUDE ANY TRAILING BLANKSH'!! !H!
* 5. Names must not include a path, only files in
the local directory should be included.
6. Names MUST not exceed 12 characters including
S the extension. This is because the preprocessor
will add two characters to the output name and
* the Hypercube will not accept more than 14
* characters per name. Fortran files should end
with a .f extension and C files should end
8 with a .c extension. A name of test.f will be
output as test.p.f to show that it is a

8 preprocessed file. Although this is something
* you should adhere to, the preprocessor will
0 accept names up to a length of 33 characters
* allowing you to preprocess long file names and
then rename the output files at file transfer time.
* 7. A maximum of 250 files may be preprocessed at
once. If you want to preprocess more files than
that, do it in several runs.
* 8. You cannot preprocess C and Fortran files using
the same configuration file. You must have
* separate files.

A-11

SAn example.

*OLDFILENAME
Smynume. f
Suynaze2. f
#iayname3 .f

*Now for our real group.

OLDFILENAIIE
11

forl.f
for2.f
for3.f
for4.f
for5.f
for6.f
for7.f
I or8.f
for9.f
forlO .f
forlI.f

A-12

Appendix B. User File Example

B-1

The following is an example of an actual praseuser.h file that you can use.

Comments are provided to aid in your understanding of what actually needs to be

done to set up the user file.

Example: praseuser.h

/* Description: This file is meant to edited by the
user to tailor the PRASE data collection software
for his specific application.

Four values are at the user's disposal.

1. PRASEDUMPTHRESHOLD tells PRASE how many records
to save prior to dumping data to the host. If
you want to debug and dump every record (so that
you don't lose data because of a crash), then set
this value to 1. If you want to disturb your
application as little as possible (so that no
dumping occurs), set this value equal to the
value used for PRASETOTRECTHRESHOLD.
This value actually sets aside memory so you must
consider the memory/speed tradeoff. This value is
used to dimension the array that holds the records
in memory.

2. PRASEMAXMSGTYPES tells PRASE how many different
message types your application will be using. This
should be at least as big as the number of different
message types you use. To protect yourself you should
probably set this greater than the number you have
just in case you make a mistake counting. The
penalty you pay for setting this large is that you
give up memory (it is a definition for an array).

3. PRASEMAXPIDS tells PRASE how many different
processes you plan to run on a single node. You as
a user should know this up front, so you should be
able to set this exactly. Again, if you set it
higher, you lose memory space.

B-2

4. PRASETOTRECTHRESHOLD tells PRASE how many total
records to save for any particular run. This can be
as big as you want as long as the disk will hold
all the data, however, voluminous amounts of data
may not be what you want.

#define PRASEDUMPTHRESHOLD 4000
#define PRASEMAXMSGTYPES 30
#define PRASEMAXPIDS 1
#define PRASETOTRECTHRESHOLD 4000

0
B-3

0

Appendix C. Format Breakout for pv

0

0 c-1

The PRASE files that hold the information collected on the Hypercubes have

their own unique format. This format can contain up to 12 fields. Depending on the

type of record, the field meanings can vary. The number of fields in a record can

also vary depending on the record type.

The fields discussed below correspond to the fields you will see when using the

pv command.

The following explanations give each field and what they can mean depending

on the record type. Find the field you are interested in, and then find the record

type that you are interested in to determine the meaning for that field.

Record Format

e Field 1 (char 6) - This field can contain one of the following record types: close,

dump, end, flick, gried, init, mchar, mdble, mflot, mint, mlong, mshrt, open,

probe, recv, recvw, rdled, send, sendw, stat, slog, wrapr, or wraps. All other

fields must be interpreted based on what type is entered in this field. The

following list describes the meaning of each record type.

- close - The record corresponds to a cclose event.

- dump - The record corresponds to a dump of data. When you find this

record type, it is telling you that PRASE has dumped data. When all

data is kept in memory and then dumped at the end of a run, a dump

record will not be included.

- end - The record corresponds to the end of collection (which should also

correspond loosely to the end of the run - unless the call to the ending

routine was moved by the user).

- flick - The record corresponds to a flick event.

- grled - The record corresponds to a greenled event.

C-2

- init - The record corresponds to PRASE initialization.

- mchar - The record corresponds to user collected data of the character

type.

- mdble - The record corresponds to user collected data of the double type

for C and the REAL *8 type for Fortran.

- mflot - The record corresponds to user collected data of the float type for

C and the REAL *4 type for Fortran.

- mint - The record corresponds to user collected data of the int type for C

and the INTEGER *2 type for Fortran.

- mlong - The record corresponds to user collected data of the long type for

C and the INTEGER *4 type for Fortran.

- mshrt - The record corresponds to user collected data of the short type

* for C.

- open - The record corresponds to a copen event.

- probe - The record corresponds to a probe event.

- recv - The record corresponds to a recv event.

- recvw - The record corresponds to a recvw event.

- rdled - The record corresponds to a redled event.

- send - The record corresponds to a send event.

- sendw - The record corresponds to a sendw event.

- stat - The record corresponds to a status event.

- slog - The record corresponds to a syslog event.

- wrapr - This record says that the count for the message type received,

node received from, and pid received from has wrapped around to 1. This

is mainly used for correlation of send and receive records.

C-3

- wraps - This record says that the count for the message type sent, node

sent to, and pid sent to has wrapped around to 1. This is mainly used for

correlation of send and receive records.

" Field 2 (2 byte integer)

- All Record Types - This field contains the node number of the recording

process.

" Field 3 (2 byte integer)

- All Record Types - This field contains the pid number of the recording

process.

" Field 4 (4 byte integer)

end - For this type, the field will contain a pseudo global time that cor-

responds to an approximate end time as collected by the end of the

PRASEEND routine (this time is recorded when the ending routine is

entered). For this record type, the time listed here will be the same as

the time listed in Field 5.

init - For this type, the field.will contain a pseudo global time that cor-

responds to an approximate end time of the initiation software contained

in PRASE.

wrapr - For this type, the field will contain a pseudo global time that

corresponds to a time just prior to the associated receive event that caused

the count to wrap.

wraps - For this type, the field will contain a pseudo global time that

corresponds to a time just prior to the associated send event that caused

* the count to wrap.

C-4

-All Other Record Types This field contains a pseudo global time refering

to just prior to the initiation of the event.

* Field 5 (4 byte integer)

- dump - For this type, this field contains a pseudo global time that corre-

sponds to a time near to the end of the dump routine. The actual dump of

data will already have a occurred when the time was recorded. However,

if you are only allowing one record to be in the trace at a time, then a

message containing the dump record will be sent after this time (you have

to get the time for the record prior to sending the record).

- end - For this type, this field contains a pseudo global time that corre-

sponds to the time that the end routine was entered. For this record type,

this time will be the same as the time given in Field 4.

- init - For this type, this field contains a pseudo global time that corre-

sponds to a time near to the end of the initialization routine. Synchroniza-

tion has already occurred at this point. However, if you are only allowing

one record to be in the trace at a time, then a message containing the init

record and one containing a dump record will be sent after this time (you

have to get the time for the record prior to sending the record).

- mchar, mdble, mflot, mint, mlong, mshrt - For these types of records, this

field contains a pseudo global time that corresponds to a time near to

the end of the routine that records the user information. However, if you

are only allowing one record to be in the trace at a time, then a message

containing the user record and one containing a dump record will be sent

after this time (you have to get the time for the record prior to sending

the record).

- recv - For this type, this field can have a couple of different meanings. If

the recv completes by the time a status is performed by PRASE on the

C-5

call to recv, then this is the pseudo global time right after we exit the call

to the Hypercube recv call. If, however, the initial status shows that the

buffer is not yet clear, this time will reflect the pseudo global time right

after the call to the Hypercube status call that shows that this is clear.

- send - For this type, this field contains a pseudo global time that corre-

sponds to a time just after the completion of the send. This does not

mean that the buffer has been cleared. It only means that the send call

was completed.

- wrapr - For this type, a pseudo global time is recorded. The time carries

the same meaning as the associated receive event. If a recv follows this

record, then look at the explanation for the recv service for the meaning

of this field. If a recvw follows this record, then look at the explanation

for the recvw service for the meaning of this field.

- wraps - For this type, a pseudo global time is recorded. The time carries

the same meaning as the associated send event. If a send follows this

record, then look at the explanation for the send service for the meaning

of this field. If a sendw follows this record, then look at the explanation

for the sendw service for the meaning of this field.

- All Other Record Types - This field contains a pseudo global time refering

to just after the completion of the event.

e Field 6 (Variable length)

- close, open, probe, recv, recvw, send, sendw, stat - For these types, this

field holds the channel number that the service dealt with (2 Byte Integer).

- dump - For this type, this field holds the channel number on which the

dump was performed. This particular channel is opened by PRASE to use

for its own communication separate from the user's program(s) (2 Byte

Integer).

C-6

- mchar - For this type, this field holds character information as recorded

by the user. There are 13 characters of information and one character for

a null at the end. (14 Characters total)

- mdble - For this type, this field holds the user supplied information as

recorded by the user. (This is the size of a double in C on the Intel

Hypercube)

- mflot - For this type, this field holds the user supplied information as

recorded by the user. (This is the size of a float in C on the Intel Hyper-

cube)

- mint - For this type, this field holds the user supplied information as

recorded by the user. (This is the size of an integer in C on the Intel

Hypercube)

- mlong - For this type, this field holds the user supplied information as

recorded by the user. (This is the size of a long in C on the Intel Hyper-

cube)

- mshrt - For this type, this field holds the user supplied information as

recorded by the user. (This is the size of a short in C on the Intel Hyper-

cube)

- wrapr, wraps - For these types, this field holds the channel number for

the service that corresponds to this wrap (2 Byte Integer).

- All Other Record Types - For these types, this field is not pertinent (2

Byte Integer).

* Field 7 (2 byte integer)

- dump - For this type, this field holds the PRASE message type used to

*dump information.

C-7

- gried - For this type, this field holds the state passed to the greenled

service.

- mchar, mdble, mflot, mint, mlong, mshrt - For these types, this field does

not exist.

- probe, recv, recvw - For these types, this field holds the message type that

the service dealt with.

- rdled - For this type, this field holds the state passed to the redled service.

- send, sendw - For these types, this field holds the message type that the

service dealt with.

- stat - For this type, this field holds the result from the call to status.

- wrapr, wraps - For these types, this field holds the message type for the

service that corresponds to this wrap (2 Byte Integer).

- All Other Record Types - For these types, this field is not pertinent.

* Field 8 (2 byte integer)

- dump - For this type, this field holds the amount of bytes that were

dumped.

- mchar, mdble, mflot, mint, mlong, mshrt - For these types, this field does

not exist.

- probe - For this type, this field holds the result of the call to the probe

service.

- recv, recvw - For these types, this field holds the number of bytes returned

from the service.

- send, sendw - For these types, this field holds the number of bytes passed

into the service in the parameter telling the service how many bytes to

send.

C-8

- wrapr - For this type, this field holds the same value that the correspond-

ing receive event holds.

- wraps - For this type, this field holds the same value that the correspond-

ing send event holds.

- All Other Record Types - For these types, this field is not pertinent.

* Field 9 (2 byte integer)

- dump - For this type, this field reflects the number of times a dump has

occurred.

- mchar, mdble, mflot, mint, mlong, mshrt - For these types, this field does

not exist.

- recv, recvw - For these types, this field holds a count from the beginning of

the run that is sequential pertaining to five specific attributes of a message.

The five attributes are, the recording node, recording pid, associated node,

associated pid, and message type. If the these all match (the first two will

since this is the local node and pid), then the count is incremented and

included in this field. A separate set of these counts are kept for messages

being sent from this node. The counts discussed here pertain only to

messages received.

- send, sendw - For these types, this field holds a count from the beginning of

the run that is sequential pertaining to five specific attributes of a message.

The five attributes are, the recording node, recording pid, associated node,

associated pid, and message type. If the these all match (the first two will

since this is the local node and pid), then the count is incremented and

included in this field. A separate set of these counts are kept for messages

being received from this node. The counts discussed here pertain only to

0 messages sent.

C-9

- wrapr- For this type, this field holds the same value that the correspond-

ing receive event holds.

- wraps - For this type, this field holds the same value that the correspond-

ing send event holds.

- All Other Record Types - For these types, this field is not pertinent.

" Field 10 (2 byte integer)

- dump - For this type, this field holds the address of the host.

- mchar, mdble, mflot, mint, mlong, mshrt - For these types, this field does

not exist.

- recv, recvw - For these types, this field holds the node that the message

was received from.

- send, sendw - For these types, this field holds the node that the message

was sent to.

- wrapr - For this type, this field holds the same value that the correspond-

ing receive event holds.

- wraps - For this type, this field holds the same value that the correspond-

ing send event holds.

- All Other Record Types - For these types, this field is not pertinent.

* Field 11 (2 byte integer)

- dump - For this type, this field holds the pid of the host process that the

data is being sent to.

- mchar, mdble, mflot, mint, mlong, mshrt - For these types, this field does

not exist.

- recv, recvw - For these types, this field holds the pid of the process that

the message was received from.

C-10

- send, sendw - For these types, this field holds the pid of the process that

the message is being sent to.

- wrapr - For this type, this field holds the same value that the correspond-

ing receive event holds.

- wraps - For this type, this field holds the same value that the correspond-

ing send event holds.

- slog - For this type, this field holds the pid passed into the syslog service.

- All Other Record Types - For these types, this field is not pertinent.

e Field 12 (2 byte integer)

- mchar, mdble, mflot, mint, mlong, mshrt - For these types, this field does

not exist.

- All Other Types - This field holds a -1 at this point in time and has been

included mainly for compatibility with Seecube.

An example of this record format would be as follows:

sendw 0 4 3480 3492 139 10 256 1 18 7 -1

C-11

Appendix D. Obtaining Information about Seecube

D-1

If you are interested in getting more information about Seecube; or you want

to obtain a copy for yourself, the following information may be helpful.

Mr. Alva Couch (the author of Seecube - who by the way has been very helpful

throughout the effort) should be contacted at Tufts University. His address is:

Alva Couch
Department of Computer Science
Tufts University
Medford Mass. 02155

Phone: k617) 381-3674

CSNET ADDRESS: couchOcs.tufts.edu

Seecube will currently work with an NCUBE Hypercube as well if you have

some interest in that particular machine.

D-2

Appendix B. Structure Charts and Pseudocode

The followiig pages include basic structure charts for the two preprocessors,

and the translator. Pseudocode is included for the main modules only of the pre-

processors and the translator. Pseudocode for the praseclct routine and for the

data collection synchronization subroutine are also provided. No other pseudocode

is provided.

Throughout the structure charts, certain modules are called multiple times

from a parent routine. Only one instance of the subroutine is shown.

B-1

JulJ

2 147

J~jvlr) alrna,

Il

U3L

'o X

cu

rin

gil0

(A-L

IIL

Litg

~J I~rD i~riz~) u' -

Fsevaoccae - y rle-C ye 3

Ge+o- nta-c ~Romtine only

fT'r CaChn fJI.lo

1ese+ rvrJ 1cnbc

flTnet or mcryi hrG e- fs as
I+ '!OJ~ LLp fO rYO R+LLr-nS fthO-

Loowrsfor -i 'r- -4 4-e. nrneW conr~rt

Ce~~ M r+oyeC.

WhileGO4 c ne fy\(q, ~e- S 0V, n

E W EnA W rW 5

LOOK-Fo era DIP yy or

Don~e wi+k rr-oLr- +Thi.

woe are 0±- -4-c C-rck C-,t r(~ooy-l

I-k o4(orr)L~r il anc pror d

(CA-Lrmsr moo-i clreCc2r1! .acievec-

-the same cixs yl-s

Pror +D +Vw-e eyr\ca c)- rr\i-r'n cti:kc-

Enck '-P

F-r\A 1-

EM I-

Get- 4-L, moLI 11nes Or t-t,-j

r I~ list 11s+ ' cv,.l j 6e+- crve L41i'~ +u

LrwAk lcoo.

COcse- fRIC I

Ernck lop

53-7

RaCL.oAujL -Lr pracSe CIC4-. Ct

Loop APoreve-r

&'A&l . ecrc,%/e

O1 xcn +t4 c-
Wric VcurA4S

0C 10 s 0
Enc loop

MILL~I 6C. - nc- L'-iihcr ctal o- ccI tlc'co
FS'CLt 4 Q CLCf hel/ LI)Cr) [pvc.)vtdcd6

Dce-cyrn %n ' c i-P ou~r Aidl is in i'~t jg. +hc.. J)ck5
traAJ-- 1; s0, 4'1rsV p1& .k- - IVg.r_

Ul-etim'rie- if woc- tv.\ or- IkC Lwes-- r~ocL vwrniz~~cr

wf I.L)C -r1.V1kc l0ocA-. -yc.v. br h ;t+is

For Cc~e 44 0c r' le- u.nc-e lc,-
IF 4Ne roce cuL are inq rurzri'r Sot..1~

e " Fb flr".C., jdl cOrl The rvxL_+vhoAN Or

LSLL. 1 C~t. Tx y 7-c

Lnc1 mg a cncl

L rid oo

vbyo- -\'3 yy'e, Coj.-\ 'a,_ 3u-- rocta"U&, y

cl--

Else e'F w~e are. roi- +-ke lowje-.- ncUA IOu*uL ar.

:DSSU-e 0- rCek\1C Loxck Lt~i- o~ ~

G-6 o-Ye-ce&_'%ve 1.ne

1S5..L -Ser-o +c5~ 42 -K2F

are-a aS~r. d re 40e. VrES O-nA+

Cory- r pici or)e ou noer&- CPI + 4ru-.4- m

Otv'.LI~seTh subfyc-,CP t.ser.+-fu-se2h

OGA we-se~a are-ro

or1 LC 0i 1t eUS f~V) ' ts~k 1

it\s WsAL5c

FM 1 .c'...1ri--c' ~~rj

(crI~ 6&r ~.oisp 4 d.in+h rss10~~

PseLL{o ccd a -fbr prase -- Cr- -re_ cL

Mn-hcaig-Le..\ctr;L

Geti- CO 5 cj-G dMLra~tioro-

For cai-h (e. (op

%5ecL~ nanIes #IOnd (:LjOper- Ie

LL5d~ +he re~ are. mo re- nrc~ -s &Ie, locop

encom-pass sevcJ physliootL I iries +

T S re YTLecd +je

~6e. 3 e+ 4 jlpe O-P in.

Ev'a I- e +OPmr

*Else. Il -t-Yts +ine2, = spclt PcaJ-lon

Wri&e tt'ne-s -f-b new (!I,.

~1~i -j-i knelf5 +ipe =SubrcxYcu:Kn- FRLncAh~cor)
(Dr- bob ck.+o S~~c tuk-ryner~t

-n>A0-fmenz . 4Yuke-

Thrco~ln rou-ne,=pate

A-~stneke rryciJ r C'rTnr c~h

AMd enclihi5 od

Else- Lori&4t -D r f-eO

op ~e~ kaovedr ?ProcessecL±h

rosu.me D c 'nrro

prover) rn

Se- in spcjc1-on' +.rue.

Else, ih rvs 'ne-s -Stop

Ackck ereain5Co~

Write- out

,S~o 6erf .cftciwc& i- LACW1)a..

Chctn~~e ~ a+rAo l IF- +hNen~~-t~~

/X~ r~i5j. 6+aer

+lse. I I+~ ine',-S- Ie = cnitline.

0ieS+ e-

Sci- In 6Pe0A i2Ohor-) = 4OJjSe,

14 mrro..n iten OuAck mry.C~

Elser 'e. s~~pQ~e

Vn&C\

&~C \cLA OF

naB -'3

IV5eLLaode -f;r prase +ra-n s a
(Main rmaij- Onij

G-r -pon fiU-a+in -Re ivnfcrA-a-Horn

-Do 't&Cor\VerSlo, (Conr\Ve -" 'e

Lt 4'or Ccper -5.)

~l:~, p~ss2 CoV~rsori (orrelaj-r. aeos IZ.-13S

+'le -fhC. O btL1(f --,erLj4e riCo1,?)

R'epo- o~r~jjLrnCov-re(Cd-kdL 5r~s~ rcie

0-l

Appendix C. System Configuration Guide

-CI

The purpose of this appendix is to convey to the reader how the system is

configured. Specifically, where do files reside, what are they for, and what do they

look like.

First, the overall structure of the system. Certain Microvax's and Sun worksta-

tions are all able to directly access the same disk. For these two types of machines,

a single disk structure has been constructed for PRASE. A separate structure exists

for the related Seecube files.

PRASE has a system level directory called /usr/PRASE. Under this directory

there are three subdirectories and a fie. The file is a default copy of the configuration

file. This file will get copied into a user's directory when the prase.new command is

, clted. Tlere ,s R bin subdirectory which holds files used for initial setup. There is

a second subdirectory called sunbin. This holds any PRASE executables that run on

a Sun workstation. A third subdirectory holds executables that run on a Microvax

using the Ultrix Operating System. This subdirectory is called vaxbin. The setup

procedures, when executed, set up the appropriate commands to allow a user to run

the correct code for the machine that he is using.

Still on the Sun/Microvax disks, there is a /usr/Seecube system level directory.

There are also three subdirectories and a file located in this directory. The file

context, and the subdirectories clumps and colors are copied into a user's directory

when the prase.new (see the User's Manual for details) command is executed.

These provide defaults used by Seecube. The bin subdirectory holds the resolve and

seecube executables.

On the Hypercubes, there is one system level directory called /usr/PRASE

Under this directory, there are two subdirectories. The bin directory holds two

setup type files, and two executables. The two executables are the prase.clct and

prase-view programs. There is another subdirectory called source. This holds source

files that will need to be copied into a user's .. z.zto.y.

C-2

The following is a type of system configuration guide. The items to the far left

are the system level directories. As you move to the right on the page, you come

to subdirectories or files until there are no more levels. Source code, which is not

needed by the user, will be kept elsewhere in a repository. The following listing is

mainly for items a ubr will need to access.

Sun/Microvax Environment

/usr/PRASE

bin/

prase-new* (Used to set up a new area

for using the PRASE and

Seecube software.)

prase.sunsetup* (Sets up aliases for the

user in a Sun environment.

It automatically

points the user to the

correct files.)

prase.vaxsetup* (Sets up aliases for the

user in an Ultrix Microvax

environment. It automatically

points the user to the

correct files.)

prase.cfg (This is the default configuration

file that gets copied into a user's

directory when the prase.new command

is executed.)

C-3

sunbin/

(currently empty)

vaxbin/

vax-prase-c.pre*

vax-prase-for-pre*

vax-prase-trans*

/usr/Seecube

bin/

resolve* (executable)

seecube* (executable)

clumps/ (This directory holds files that are

copied for the user's use of seecube.)

2-per-clump

4-per-clump

8-per-clump

colors/ (This directory holds subdirectories that

hold files for the user's use of seecube.)

4_only/

cmap-cload

cmap-csize

cmap-eload

cmap-esize

cmap-nload

cmap-nsize

C-4

default/ (The rest of these subdirectories

contain files with the same names

as in the 4-.only subdirectory.)

graduated/

light-.color/

logarithmic/

test/

weird/

context (This is a file that holds defaults

that seecube uses for initial

display information - copied for

user.)

iPSC/1 Hypercube Environment

/usr/PRASE

bin/

prase.clct* (This is the background collection

routine that runs on the host.)

prasehnewcube* (Used to set up a new area for

using the PRASE software.)

prase..setup* (Sets up aliases for the

user in an Hypercube environment.

It automatically points the

user to the correct files.)

C-5

prase-view* (This allows the user to view

the data in the binary files -

this is the program run by the

pv command.)

source/

PRASEFOR.H (Fortran header file - copied

for user)

prase.code.c (PRASE Subroutines - copied for

user)

prase-extern.h (C header file - copied for

user)

praseglob.h (C header file - copied for

*user)

prase-incl.h (C header file - copied for

user)

praseuser.h (C header file - default copy

copied for user)

The other source code files that are pertinent to the system but that have not

been fisted are:

prase-for.pre.a (Fortran Preprocessor source)
prase-c-pre.a (C Preprocessor source)
prase-trans.a (Translator source)

prase-clct.c (Source code for the program
that runs in the background on
the Hypercube that accepts data
from t'.- nodes.)

C-6

prase-vieu.c (Source code for the program
that takes a binary PRASE data
file on the Hypercube and
displays the c^"tents in ASCII.
This program only runs on the
Hypercube. It will not run
properly on a Sun if compiled
there.)

Seecube source (Several Seecube source files
and other files are also kept
either in the repository or
on tape.)

The rest of this appendix holds certain copies of files pertinent to the config-

uration and rebuilding of the PRASE system. Note that some of the comments in

the files have been rearranged for printing. The words, however, have not changed.

C-7

There is a Sun setup procedure that should be run if a user is on a Sun work-

station. The procedure follows:

File Name and Path: /usr/PRASE/bin/prasesunsetup

S PRASE Setup for the Sun.
S

* Author: Capt Mark Kahl
#

* Date: 4 November 1988
#

S This file will set up the stuff a user needs to use the PRASE
* system on a Sun Workstation. Things are different between the
* Vax and the Suns, so someone running on the Sun should use this
setup file. To move or reinstall the PRASE or Seecube software,
you should change the path names in this file to reflect the
appropriate information.
#
#

--First we set up some aliases so that the user can get to
X the files he needs.
*

alias seecube '/usr/Seecube/bin/seecube'
alias resolve '/usr/Seecube/bin/resolve'
alias prasetrans '/usr/PRASE/sunbin/prasetrans'
alias prase.cpre '/usr/PRASE/sunbin/prase.c.pre'
alias prase.for.pre '/usr/PRASE/sunbin/prase.for.pre'
S
#

* --Now we do one last alias that allows the user to copy
in all the stuff that he will need to run with. This
includes a default configuration file as well as all
the Seecube stuff needed. It also makes a data area
to place the data in.
*

alias prasenew 'source /usr/PRASE/bin/prase-new'
C

C-8

There is also a Vax setup procedure that should be run if a user is on a

Microvax. This file follows:

File Name and Path: /usr/PRASE/bin/prase-vaxsetup

PRASE Setup for the vax (olympus).

Author: Capt Mark Kahl

Date: 2 November 1988
*

This file will set up the stuff a user needs to use
the PRASE system on the Vax (olympus). Things are
different between the Vax and the Suns, so someone
running on the Vax should use this setup file. To
move or reinstall this software, you should change
the path names in this file to reflect the current
* information.

* --First we set up some aliases so that the user can get to
* the files he needs.
*

alias prase-trans '/usr/PRASE/vaxbin/vax.prase.trans'
alias prase.c.pre '/usr/PRASE/vaxbin/vax-prase-c-pre'
alias prase.for.pre '/usr/PRASE/vaxbin/vaxprase.for.pre'
#
#

* --Now we do one last alias that allows the user to copy
* in all the stuff that he will need to run with. This
* includes a default configuration file as well as all
* the Seecube stuff needed. It also makes a data area
to place the data in.
*

alias prase-new 'source /usr/PRASE/bin/prase-new'
9

C-9

The next file sets up a 1ji-w directory by copying things for the user. This file

can be run from either a Sun or Microvax.

File Name and Path: /usr/PRASE/bin/prase..new

PRASE new to setup for a new PRASE area.

S Author: Capt Mark Kahl
8

* Date: 2 November 1988
#

This file copies in default items such as a default
* configuration file, and all the seecube support stuff
needed. To move or reinstall this software, you
* should update this file to show current information.
*
#
#

* --Ok, now we copy in the stuff.

echo " "

echo " "

echo "Copying files
echo " "
*

cp /usr/PRASE/prase.cfg
cp /usr/Seecube/context
cp -r /usr/Seecube/colors
cp -r /usr/Seecube/clumps
*
*

echo "Complete . .

echo " "

C-10

There are two files that are used on the Hypercubes for setup. First the setup

file.

File Name and Path: /usr/PRASE/bin/prase-setup

PRASE Setup for the Hypercubes.

Author: Capt Mark Kahl
8

9 Date: 4 November 1988
8

* This file will set up the stuff a user needs to use the
* PRASE software. This will set up aliases so that a user
* can get access to any of the PRASE code the he wants. To
* move the code or to reinstall the software, just update
the pathnames below.
#
S
#

* --We will set up the aliases now for running the programs
* the user will need to be able to run.
S

alias prase-clct '/usr/PRASE/bin/prase-clct&'
alias pv '/usr/PRASE/bin/praseview'
S
S
S

--Now we give the user the capability to make a new
S prase-code.o file without having to know the command.
*

alias pcode.compile 'cc -c -Alhu -K prasecode.c'
*
*
#

* --Now we provide the user with one last alias. This will
* run a script that copies all of the PRASE files into a
users directory. It will also create a data directory
beneath the user's current directory.
S

alias prase-newcube 'source /usr/PRASE/bin/prase-newcube'

C-11

The second fie on the Hypercubes sets up a directory for a new session of using

PRASE as well as copying in needed files.

File Name and Path: /usr/PRASE/binprase.newcube

8 PRASE nevcube to setup for a new PRASE are.

*Author: Capt Mark Kahl

Date: 4 November 1988
S
* This file copies in default items needed for a PRASE session.
* It also creates a data directory beneath the current default
directory. To relocate the files or reinstall the software,
S just change the patbnames below to reflect the correct
* configuration.

-- Ok, now we copy in the stuff.
S

echo""
echo "Copying files into your default directory."

echo It of

cp /usr/PRASE/source/PRASE-.FOR.H
cp /usr/PRASE/source/prase-.code .c
cp /usr/PRASE/source/prase-.glob .h
cp /usr/PRASE/source/prase-.usor .h
cp /usr/PRASE/source/prase-.extern .h
cp /usr/PRASE/source/prase-.incl. h

*--Now we make the directory for data.

echo"
echo "Creating a data directory called prase..data."
echo"

mkdir prase-.data

C-12

Now the makefile for the two preprocessors is included. It really is just a script.

No dependencies are used.

prase-for-pre:
ada -M prase.for-pre.a -o prase.for-pre

prase-c.pre:
ada -M prase.c-pre.a -o prase-c-pre

C-13

Now the makefile is included for the translation program. This program should

be able to be compiled on either the Sun or Microvax. However, you will have to do

some commenting of a particular if statement. If you get an error on compilation

(not just a warning), go to that line in the code and read the instructions around the

errored line. If the error stems from being on a certain machine that doesn't match

with the correct if structure, just comment and uncomment as necessary.

prase.trans:
ada -M prasetrans.a -o prasetrans

C-14

A makefle for the prase.clct.c and prase..viewxc programs on the Hypercubes

is also provided.

* This make tile should be used to make the programs prase-.clct and
S prase-.viev.

CFLAGS a -Alhu -K

all: prase..clct prase-.view

help:
Qecho
Qecho
@echo "make all or make - makes prase..clct and prase-.view"
Gecho "make prase..clct - makes the collection program that"
Qecho "1 runs in the background on the host."
@echo "make prase.view - makes the viewing program that allows"
Qecho "a user to view the data in the files"
Cecho "holding the collection results."
@echo"
techo"

prase..clct: prase-.clct .c
cc -Alhu -o prase-.clct prase..clct.c /usr/ipsc/lib/chost.a

prase.view: prase-.viev. c
cc -Alhu -o prase..viev prase-.viev.c

C-15

Appendix D. Volume II Pointer for Test Cases and Results

The test cases and results have not been incorporated into this document. It

has been placed in Volume II. This appendix is being used as a pointer to where

the results may be found. For information pertaining to the test cases and results

associated with this thesis, contact:

Dr. Thomas C. Hartrum

Dept. of Electrical & Computer Engineering

Air Force Institute of Technology

AFIT/ENG

Wright-Patterson AFB, OH 45433-6583

D-1

Appendix E. Seecube File Formats

E- 1

One goal of this thesis was to provide compatibility with the local version of the

Seecube software. A translation program has been provided that will take the new

data format and translate a data file into the Seecube data format. The main thrust

of this appendix, is to briefly discuss the current Seecube data format. For more

information, refer to the Seecube User's Manual [3:4-111. All that is really being

discussed here is the author's understanding of the fields and the fields of interest

to the author. No attempt is made to cover every possible field entry allowed by

Seecube.

The Seecube version that AFIT has obtained, requires data formatted in a

specific way to be useable by the Seecube Resolver. The data file name must be

named human, and the file must be in ascii. Other data files are produced when the

Resolver is run, but these will not be discussed here since they now become specific

to the Seecube system (nothing that must be interfaced with by PRASE directly).

The Seecube data format contains several fields, and in a general sense, provides

a format that is usable in many different situations. It appears that Seecube has two

records that relate to the sendw and recvw utilities. One record lists the beginning of

the call and the other record pertains to the end of the call. It seems that the major

differences between the two records are the time and cross-referencing information.

Seecube's Resolver accepts a file containing records with 14 fields. To aid in

the discussion, two example records- and explanations pertaining to these records are

provided.

Record Pair Example

0 4 5 6 3480 wb 139 10 256 18 7 18 17 x

0 4 6 5 3492 we 139 10 256 18 7 18 17 x

* eField 1 -This field contains the node number that the eventwascollectedon.

(0 in the example)

E-2

" Field 2 - This field contains the pid (process id) of the process that collected

the data. (4 in the example)

" Field 3 - This field contains a number corresponding to the event. This appar-

ently is a sequential number. Each consecutive event gets the next sequential

number. (5 in the first record of the example - this means that this record was

the sixth event recorded - events start numbering at 0)

" Field 4 - This field contains a reference number to the corresponding event on

the same node. In the example, this field points to the next record which is

the corresponding write end. Notice that the second record points back to the

write begin.

" Field 5 - This field contains a pseudo global time. (3480 in record 1)

" Field 6 - This field holds what C,-ach calls the "opcode" field [3:8-9]. It iden-

tifies the type of record. Field values mean different things based on what this

field contains.

* Field 7 - This field holds the number of the communications channel that the

event occurred on. (139 in both records)

" Field 8 - This field contains the message type. (10 for both records)

* Field 9 - This field holds the message size. (256 in both records)

* Field 10 - This field contains the node that the message is being sent to. (18

in the example)

" Field 11 - This field contains the pid that the message is being sent to. (7 in

the example)

" Field 12 - This field contains the sequential event number logged on the asso-

ciated node that corresponds to the event logged on the node recording this

record.

E-3

0
* Field 13 - This field contains the companion event (for our field 12) on the

associated node.

* Field 14 - This field contains what Couch calls a 'text marker' [3:8], It is an

integer and can be used to uniquely identify each calling location within a piece

of code. For example, each sendw can be coded with a different marker integer

so that the trace records can be correlated with a specific message call. In our

example, this field contains an x because gathering of this field is evidently not

implemented in the version of Seecube that we possess.

To restate an important point, this seems to be a general format that can take

several things into account. Also, the cross-referencing information is sent along

with the message making the whole data collection format and collection method

somewhat resistant to e rors (if an error occurs, you can throw away the bak: record

* but still have the other good records around).

Another point that should be made is that the main version of the Seecube

Data Collector runs on the NCUBE Hypercube. That may be another reason for

the file format being used. The example has been given in light of how I understand

the records to fit with the message events caused by calls to the Hypercube routines.

E-4

Appendix F. PRASE Fi.!e Formats

F-i

There are four file formats that PRASE deals with. One is the format of the

configuration file. An example of this file is provided in its own appendix in the

User's Manual. There are also discussions of the file and its use in other parts of the

User's Manual and the main body of the Thesis. Therefore, no further discussion

will be included here.

A second is the file that contains the data collected on the Hypercube for a

run. This file has been discussed in Appendix C of the User's Manual. It is discussed

there in reference to the pv command but the fields are explained in sufficient detail.

It should be noted that each record in that file requires 32 bytes of storage and is

stored on disk in binary. It appears that depending on which machine the file is

being read on, it must be read differently (or least using a different format). The

data is stored on the Hypercube with the low data byte being stored first.

The third is a file that the translator uses as an intermediate file for processing.

This file will be discussed here. Finally, the translator must put out the file format

that is used by the Seecube Resolver. This file format has been discussed in the

appendix specific to the Seecube file format.

F.1 Intermediate Translation File

The translator does not change the original data files containing the data col-

lected on the Hypercubes. Instead, it keeps intermediate results in temporary files..

The files are named the same as the data files except that a 't' is added to the be-

ginning of the name. An intermediate file name for node 5 pid 7 would be tn5_p7

The files are written out using a construct in Ada and then read back in.

They are, however, not deleted from the disk. Actual physical formats are unknown

especially between machines (Sun and Microvax). The formats are very possibly

different between the machines. I will provide only the format as defined in the Ada

source code. It should be noted that unless the translator runs to completion, the

F-2

files may be in some state other than a final state that reflects the following data.

The first 12 fields have the same meanings as the data collection files as outlined in

Appendix C of the User's Manual. The only difference is that there are a limited

number of record types allowed in this file. The types are provided in the first

field description. Other fields (that do not have a corresponding field in the data

collection fields) are explained. The entire record is 53 bytes long.

It follows:

e Field I (char 6) - This field can contain one of the following record types: close,

open, recv, recvw, send, sendw, wrapt, and wraps.

* Field 2 (2 byte integer) - recording node.

* Field 3 (2 byte integer) - recording pid.

o Field 4 (4 byte integer) - begin time.

o Field 5 (4 byte integer) - end time.

e Field 6 (2 byte integer) - channel.

9 Field 7 (2 byte integer) - message type (if applicable).

* Field 8 (2 byte integer) - message size (if applicable).

* Field 9 (2 byte integer) - message count (if applicable).

e Field 10 (2 byte integer) - corresponding node (if applicable).

* Field 11 (2 byte integer) - corresponding pid (if applicable).

* Field 12 (2 byte integer) - Seecube compatible marker.

* Field 13 (char 2) - Seecube begin record designator. (one PRASE record may

often translate into two Seecube records - this is the "opcode" [3:8-91 for the

beginning record)

- close - For this type, the field will contain a 'cc'.

F-3

- open - For this type, the field will contain a 'co'.

- recv, recvw- For this type, the field will contain a 'rb'.

- send, sendw - For this type, the field will contain a 'wb'.

- wrapr - For this type, the field will contain a 'wr'. However, this field

does not correspond to a Seecube "opcode" and is not translated into the

human file.

- wraps - For this type, the field will contain a 'ws'. However, this field

does not correspond to a Seecube "opcode" and is not translated into the

human file.

* Field 14 (char 2) - Seecube end record designator. (one PRASE record may

often translate into two Seecube records - this is the "opcode" [3:8-91 for the

ending record)

- close - For this type, the field will contain blanks.

- open - For this type, the field will contain blanks.

- recv, recvw - For this type, the field will contain a 're'.

- send, sendw - For this type, the field will contain a 'we'.

- wrapr - For this type, the field will contain blanks. However, this field

does not correspond to a Seecube "opcode" and is not translated into the

human file.

- wraps - For this type, the field will contain blanks. However, this field

does not correspond to a Seecube "opcode" and is not translated into the

human file.

F-4

" Field 15 (4 byte integer) - This field holds the value that will ultimately be

placed in the human file field number 3.

- close, open, recv, recvw, send, sendw - For these types, this field will

contain a value that corresponds to the human file field number 3.

- wrapr, wraps - For these types, this field will contain a count pertaining to

a previous record that was not a wrapr or wraps. In the case of previous

records of the types recv, recvw, send and sendw, this will point to the

begin count (or Field 15).

" Field 16 (4 byte integer) - This field holds the value that will ultimately be

placed in the human file field number 4.

- close, open, recv, recvw, send, sendw - For these types, this field will

contain a value that corresponds to the human file field number 4.

- wrapr, wraps - For these types, this field will contain a count pertaining to

a previous record that was not a wrapr or wraps. In the case of previous

records of the types recv, recvw, send and sendw, this will point to the

begin count (or Field 15).

" Field 17 (4 byte integer) - This field holds the value that will ultimately be

21aced in the human file field number 12.

- close, open - For these types, this field is undefined.

- recv, recvw, send, sendw - For these types, this field will contain a value

that corresponds to the human file field number 12. If a record is not

correlated, the value will be 0.

- wrapr, wraps - For these types, this field is undefined.

" Field 18 (4 byte integer) - This field holds the value that will ultimately be

placed in the human file field number 13.

F-5

- close, open - For these types, this field is undefined.

- recv, recvw, send, sendw - For these types, this field will contain a value

that corresponds to the human file field number 13. If a record is not

correlated, the value will be 0.

- wrapt, wraps - For these types, this field is undefined.

e Field 19 (1 byte boolean) - This field will be true if a recv, recvw, send, or

sendw record has been correlated with the appropriate corresponding record.

- close, open - For these types, this field is undefined.

- recv, recvw, send, sendw - This field will be true if the record has been

correlated with its counterpart record.

- wrapr, wraps - For these types, this field is undefined.

F-6

Appendix G. File Translation Discussion

0
G-1

This thesis effort has resulted in providing compatibility with the version of the

Seecube software available here at AFIT. A translation program has been provided

that will take the new data format and translate the data files into the Seecube data

format. The main thrust of this appendix is to show that the existing Seecube data

format can indeed be derived from the new data format.

Two reasons for a new format include 1) less user interaction was desired

'(no need to change messages etc.) and 2) space savings seemed possible. This is

not meant to imply that Seecube was done incorrectly or even inefficiently; on the

contrary, Seecube appears to have been implemented with a very general format

which seems applicable in several situations. However, it seems that the work can

be done differently while still maintaining compatibility with Seecube.

The Seecube data format contains several fields, and in a general sense, provides

a format that is usable in many different situations. AFIT's local copy of Seecube

requires messages to contain empty bytes at the beginning. This is used to send cross-

referencing information to the receiving node. This cross-referencing information can

then be used after the run to correlate the sending records from one node with the

receiving records on another node. This is important because a user may then get

some idea as to when a message's transmission began and ended. With the new

data format, these cross referencing fields can be derived from the ordering on each

individual node and from the ordering imposed when sending messages of the same

type within the Intel iPSC environment. Thus, the new format does not require a

user to keep the first bytes of messages free for use by the collection software.

G-2

Seecube writes out two records for the sendw and recvw utilities. One record

lists the beginning of the call and the other record pertains to the end of the service.

The major differences between the two records are the times and cross-referencing

information. For the send and recv services, it seems that three records can be

written [4:28, 32-33]. The first and third records correspond to the beginning and

ending of the events respectively. Thus, the only real difference between the services

with waits and the services without waits is the extra Seecube record.

In reference to translation to Seecube format, send events were mapped to

sendw events and recv events were mapped to recvw events. In the case of a recv, the

begin time was the time just prior to the call to the service and the end time was

the time that status was called and the returned value showed that all was complete.

This then in some sense maps to a recvw. In the case of a send, the results are

different than what it appears Seecube would do. Seecube evidently also requires a

status to clear a send. In the case of PRASE, the begin time is compatible but the

end time is the time just after the send service completes. A note was placed in the

User's Manual pertaining to this. PRASE could be changed to require a user to call

status until the send completes, however, this was not done.

The new format will not keep the Seecube cross-referencing information (specif-

ically, extra bytes are not required to be sent with a message) because it can be

derived if needed. However, the count field in the new format is used for cross-

referencing. The time information will be kept in two fields, one for the beginning

time and one for the ending time.

Seecube's Data Collector yields a file containing records with 14 fields. To aid

the discussion, two example records are provided. For more details on the Seecube

file format, refer to the appendix in this thesis pertaining to that subject.

G-3

Record Pair Example

0 4 5 6 3480 wb 139 10 256 18 7 18 17 x

0 4 6 5 3492 we 139 10 256 18 7 18 17 x

With this example in mind, we will now give an example record in the new

format. One record in the proposed format should correspond to two records in the

above example. The proposed format can contain up to 12 fields. For further infor-

mation about this format, refer to the appendix pertaining to PRASE file formats.

An example of this record format follows:

sendw 0 4 3480 3492 139 10 256 1 18 7 -1

Now we can discuss the translation process from the new format to the Seecube

format. In using Seecube, we are mainly interested in displaying information per-

taining to message passing. Thus, only channel opens, channel closes, message sends,

and message receives will be translated. Wrap records are important for translation

but do not get translated into any type of record for the Seecube Resolver to use.

All other fields will discarded in reference to translation.

It is now time to discuss how the single new record can translate into the two

example records in Seecube format. The translation of several of the fields are very

straightforward. For example, the sendw maps directly to the wb and we of the two

Seecube records. The 0 (node) in the new record maps to field 1 in both Seecube

records. The 4 (pid) maps to field 2 (both records). The 3480 (start time) maps

to field 5 in the first Seecube record and the 3492 (end time) maps to field 5 in the

second Seecube record. The 139 (channel) maps to field 7 in both records. Also the

10 (message type) and 256 (message size) map to fields 8 and 9 respectively for both

Seecube records. The 18 (node the message was sent to) and 7 (pid the message was

G-4

sent to) map to fields 10 and 11 respectively for both records. Finally, the -1 (text

marker) maps to field 14 in the Seecube format of both records.

At this point we have discussed filling in several fields for the Seccube format.

The following two records show the fields dealt with thus far and leaves dashes in

the fields we still need to fill in.

0 4 - - 3480 wb 139 10 256 18 7 - - x

0 4 - - 3492 we 139 10 256 18 7 - - x

First, we will discuss fields 3 and 4 of the Seecube format. Field 3 is the

sequential numbering of this event within the trace for a specific node. Field 4 is the

number that points to the associated record that corresponds to the current record.

Before going further, a point should be clarified. A receive event means that

somebhing was read by a Hypercube call or was cleared as being read by a Hyerbe

call. It does not refer to the actual time that the message arrived at the physical

node.

As Seecube records are built, a running count determines what sequential num-

ber the current record is. For this to work, the records in the new data format must

have been put in the file in the order that they occurred. As long as records are kept

in order in memory, and then dumped to file in order, the records for the individual

nodes will be in order. Thus, the wb record number (field 3) can be derived by

counting. Field 4 in sendw and recvw types of services will show correspondence to

a contiguous record since no events should occur between the start and ending of

these services. For send types, they also should have no occurrences between them.

A problem comes in when we try to deal with recv records because of the way that

is they are collected. When a recv is issued no record is saved at the time. This is a

problem as will be demonstrated shortly. For non-blocking services, Seecube records

G-5

a start record and an ending record. The time that the recv is issued is saved. Then,

when a status is called that completes this recv, the ending time is included and the

record is written to the trace. If any services have been called between the time that

the recv was initiated and the time that it completed, we then have a time that is out

of order. In fact, a service must be called in between - the status service is called to

complete the recv. The User's Manual will reflect the fact that to use Seecube, you

must not call any message services between the start and stop of a recv so that the

timing in the human file will not get out of order. If this is adhered to, the results

should be fine and our ordering assumption will stand.

Field 4, then, should contain a number that is one larger than that of field

3. In the ending record (we for Seecube), the fields can be derived in like manner.

Thus, field 3 will contain the next sequential number and field 4 will point back to

the previous record.

0 Fields 12 and 13 are the last two fields needed to make the translation from the

new data format to the Seecube data format. These fields correspond to the receive

records on the node that the message was sent to. As previously stated, records that

pertain to a single node are in sequential order.

Fields 12 and 13 are the most difficult to deal with since messages sent in one

order can be received in a different order if their message types are different. If the

message types are the same, however, the iPSC will keep the messages sent from one

node to another in order all the way to the receiving node. This fact makes filling

in these fields possible. If the iPSC ever switches schemes, these fields will no longer

be translatable. A count is included in the new format that is a count specific to

the corresponding node, pid, and message type. The count is incremented by one

from the previous value every time the triplet of information matches. Thus, for

each specific triplet, we keep a separate count.

To cut through some of the possible confusion here, we will illustrate the con-

cept with an example. Node 1 has 5 messages to send to node 7. They are labeled

G-6

as A, B, C, L, and M. Node 1 also has 3 messages for node 12. These are labeled X,

Y, and Z. After the run, we wish to translate our recorded data into Seecube format

so we can analyze the data using the Seecube Sequencer. A, B, and C are all of type

100. L and M are of type 200; and X, Y, and Z are also of type 100.

Let's say now, that node 1 sends messages A, B and C to node 7. Almost

immediately after C is sent, node 1 fires off messages L and M also destined for node

7. Soon thereafter, messages X, Y, and Z are also dispatched to their destination.

The send trace is well defined and could be recorded in only one way because

events are recorded in order on each node. Thus, the trace should look like the

following (with times, sizes, etc. dummied).

rec start end msg msg seq other other

Type nod pid time time char type size cnt nod pid mrk

send. 1 0 543 548 170 100 1024 1 7 0 -1

sendy 1 0 548 548 170 100 1024 2 7 0 -1

sendw 1 0 553 558 170 100 1024 3 7 0 -1

sendw 1 0 558 563 170 200 445 1 7 0 -1

sendw 1 0 563 563 170 200 768 2 7 0 -1

sendw 1 0 598 603 170 100 1024 1 12 - 0 -1

sendw 1 0 603 603 170 100 1024 2 12 0 -1

sendw 1 0 608 613 170 100 1024 3 12 0 -1

Notice that the sequence counts increase for each message that has a matching

triple of message type, other node, and other pid. With the above records in mind,

we can now talk about the receive information that might be recorded. Node 7 would

have to record receive information for message C after message B since message C

was sent after message B and is of the same message type. Message L however, could

be recorded before or after a receive for either message B or C. This is because the

Hypercube will only keep messages with like types in order from one specific node to

another specific node. Thus, message L could actually be received prior to messages

A, B, or C. Let's propose a set of receive records for sake of our example.

G-7

rec start end nsg nag seq other other

Type nod pid 'tine time chan type size cnt nod pid ark

recw 7 0 8 590 320 100 1024 1 1 0 -1

recvw 7 0 690 690 320 200 446 1 1 0 -1

recwe 7 0 590 595 320 200 768 2 1 0 -1

recvw 7 0 696 605 320 100 1024 2 1 0 -1

recwv 7 0 610 616 320 100 1024 3 1 0 -1

Thus, we see that even though messages were received out of the order they

were sent, like message types are received in order. To correlate the send and receive

records, then, we simply match the send and receive nodes, the message count and

the sequence count. With these six fields matched, we are able to correlate send

records on one node with receive records on another node. The only problem would

be if the counts on one node wrapped around while the counts on another node did

not. Wrap records are written to the trace when a wrap occurs so that the translator

can determine if the counts are actually the ones that go together or not.

If we always began recording events at the start of a run, we wouldn't really

need the sequence count field. We could figure the count out as we were translating.

We need this count, however, so that we can start recording at times other than

start time. The count will be incremented even when an event is not recorded thus

keeping the needed sequence information.

Since messages are kept in order within message type, and we are keeping

a count for each message type to each node-pid combination, we now have a way

of producing the same sequential number on both a send and receiving node for

matching triples of information. This means that each node then figures out the

numbers that allow us to correlate send and receive records of information.

Once the correlation is made, fields 12 and 13 of the send get the values of

fields 3 and 4 of the receive ending record. Fields 12 and 13 of the receive will get

G-8

the values of fields 3 and 4 of the send beginning time and the translation will be

complete.

In an attempt to be a little more formal, I will introduce some mathematical

concepts and symbols. First, let us define events occurring some node and process

as

E(G.1)

where nI is the node h and pi is the process i the event occurred on and j is the

sequential number of the event. TO denotes staxtup time of the parallel job and

T(E-hPJ) (G.2)

denotes the time that event j occurred on node nh and process pi. All times are

absolute times. Since records are written sequentially into memory (and then to file)

in the order that they occur, the following holds true

TO < T(E,,,,p.jI) < T(E,,pij) < T(EnI,pj+I) (G.3)

Thus, events are stored in a known order that can later be used to our advantage.

Now on to matching send events on one process with receive events on another

process. Since two processes P, and pm running on different processors would both

start at or sometime soon after TO, all events must occur after TO. We also know

that events are stored in order of occurrence (from Equation 1). This means that

the time of the first send event s from p to pm is stored prior to the next send event

time s + k from p to p,. Mathematically this is stated as

T(E,,.,p,-) < T(E.,,,.+k) (G.4)

G-9

We also know that the first receive event time r on p, is stored in the trace

prior to the second receive event time r + c, or

T(EZbI.nP) < Y(E,,p.,,P+.) (G.5)

The question is, "did the first message sent m arrive prior to the second message

sent M 2 ?" The iPSC Hypercube works to our advantage in answering this question.

If the two messages sent have different message types, then the order of receipt is

unknown prior to actual receipt. Either message could get to its destination first.

This is not a problem, however, since the message types would differ in the trace

records and matching could occur in only one way anyway. If, however, the message

types are the same, then n, will always proceed M 2 in arriving. Thus, for any

message traces that could cause an exact match (meaning message types are the

same), all the traces will be in the proper order.

Due to the iPSO ordering within message type, then, we can say that the first

send from one node and process correlates to the first matched receive on some other

process, not necessarily on another node. Thus, these orderings and user restrictions

allow us to rebuild fully the Seecube records required for compatibility.

0-10

Appendix H. Configuration File Example

This appendix is being used as a pointer. To examine a copy of the configura-

tion file, refer to the User's Manual Appendix A.

H-1

Appendix 1. Summary Paper

On the next pages you will find a summary paper for this project. Appendix

numbering is not used.

0

I-i

PRASE: Intel iPSC Hypercube
Instrumentation Software

Thomas C. Hartrum
Mark A. Kahl

December 1, 1988

1 Introduction

Single processor computers are rapidly becoming a thing of the past. Their
replacements are multiple processor systems, running in parallel, which may
yield greater overall speed and efficiency. Mainframe computer.s sometimes
use dual CPUs and almost always contain separate specialized processors to
interface to input/output devices such as disk drives. Even some smaller
home computers employ specialized chips (processors) to handle functions
such as input/output or graphics.

There is great potential, in a parallel environment, to complete several
times the amount of work of a single processor in the same amount of time.
Just as a factory might hire more workers to increase production, computers
can utilize multiple processors to better handle their workloads. In fact,
when chip makers reach speed limitations, the only alternative for faster
service may be to do more work in parallel.

The potential speedup offered by a parallel environment can be appealing
to a user. A programmer, however, may not share the user's enthusiasm when
faced with events happening at the same time and often in an unpredictable
fashion. If parallel processors worked autonomously, the problem might not
be so complex. Normally, though, they interact with each other, causing
much greater complexity.

One way to att.ck the potential confusion is to use a parallel process-
ing monitor/analyzer. PRASE is a suite of software that provides such a

monitoring capability for the Intel iPSC Hypercube. The goal of the project
was to support the uer community in their parallel processing efforts with
a working monitor that people would be able to use easily.

The software from an existing project at Tufts University in Massachu-
setts, Seecube [11, was obtained as a starting point for this project. Seecube
has three major parts [1, 1]. The first is the Data Collector, a set of subrou-
tines that replace the normal Hypercube calls with calls to instrumentation
routines that take care of data collection. Once the data is collected, the
Resolver "cross-references these traces by matching sends with their corre-
sponding receives, and sorts the traces into a single global trace for the entire
hypercube" [1, 1]. The Sequencer is the graphical display portion of Seecube
[1, 11. It provides several different displays to aid the parallel processing user
in understanding the workings of his code.

Limitations of Seecube included the unavailability of support for the cur-
rent version of the Intel iPSC; lack of ability to collect application-specific
data; the requirement for modification of user data structures (specifically
messages); the requirement for manual instrumentation of the user's code;
and the need for some additional graphics routines. However, Seecube pro-
vides many excellent graphics displays that are very useful. Therefore, com-
patibility with Seecube was desired in order to take advantage of Seecube's
graphical capabilities.

A new data collector was written, patterned somewhat after Seecube's.
The PRASE collection routines are written in C and can be called from both
C and Fortran application programs. Like Seecube, the normal Hypercube
routines must be replaced by calls to the PRASE routines. To aid the
user with the task of code instrumentation, preprocessors for both C and
Fortran were written. These programs relieve the user of most of the work
required to prepare source code for instrumentation. Ada was used as the
implementation language for the preprocessors.

Since PRASE data formats are different from Seecube data formats, a
translator was required to maintain the desired compatibility. The translator
produces a file that is usable by the Seecube Resolver. Figure 1 depicts the
PRASE system and its compatibility with Seecube.

'At this point in the PRASE implementation, certain cases require the user's code to
be changed or added to.

2

--

PRASE

User New _ Collect Data New
Preprocess

Code Code Data Files Displays

Translate

Human File

-------- ---------------------------Seecube

R vInterlace Graphically

Reove PFiles Display

Figure 1: PRASE with Compatibility to Seecubel

3

2 Data Collection

A set of subroutines comprise the data collection mechanism utilized by
PRASE. These routines call the desired Hypercube services while insur-
ing that performance data is collected. One set of subroutines, written in C,
support both C and Fortran programs. This means that the Fortran user
will ultimately access the service provided by the C node library as opposed
to the Fortran node library.

Both single and multiple processes per node are supported. However,
only messages sent to specific nodes are supported; global sends to the entire
cube or subcubes are not supported. A user can gather data on the cclose,
copen, flick, greenled, probe, recv, recvw, redled, send, sendw, status, and
syslog Hypercube calls.

The collection software attempts to synchronize node clocks so that some
sense of global timing can be achieved. Note that Seecube requires some
type of global time stamp although their synchronization method is different
[1, 2]. A single process is designated as the Controlling Process (CP) which
takes command of the synchronization step. CP is a process running on the
node with the lowest node number. CP notifies a single process on each of the
other nodes that it is their turn to synchronize. As a node is polled by CP,
synchronization can begin. The polled node saves the current time and then
sends a message to CP. CP in turn puts its current time and its base time
(start time) into the message and sends it back to the node. The node saves
the time of receipt and then calculates an approximate difference between its
clock and CP's clock. This difference, along with CP's base time, can then
be used to determine an approximate global time for each data collection
event. The local process then passes the time information on to any other
processes running on the same physical node. At this point, synchronization
is complete for a single node.

Besides Hypercube system calls, data can also be collected on user specific
information. Routines have been included that allow a user to save values
of variables specific to his program. Several variable types are supported
including integer, long integer, float, double, and character. This capability
gives the user flexibility in what he can monitor. If the change of a variable
over time is significant, a user can gather data pertaining to this change.

4

In reference to message passing, the available version of the Seecube Data
Collector required a user to leave the first 4 bytes of each message available for
"cross-referencing information" [2, 4]. In order to increase user transparency,
PRASE uses another means to develop the cross-referencing data required
by the Seecube display software.

There are six pieces of information that uniquely identify a message from
any other message for a single run. They are the node and pid from which
the message was sent, the node and pid to which the message was sent, the
message type, and a unique sequence number. The sequence number is a
count of other messages with the first five pieces of identical information.
For example, the first message of type 10 sent from node 1 pid 5 to node 20
pid 3 would be assigned a sequence count of one. A second message of the
same type, origination point, and destination would get a count of two. Each
node keeps track of these sequence counts and logs the information into the
PRASE records as sends and receives complete. Since the Hypercube keeps
messages of the same type from a specific location to a specific location in
order, tbe order in which the messages are sent corresponds to the order in
which they are received. Therefore, as long as both the sending and receiving
processes are keeping track of these sequence counts, the cross-referencing
information can be determined after the run is complete.

To actually get the data from the nodes to files on the host, a special host
process runs in the background that accepts data collected on the nodes (see
Figure 2). Since this process runs until killed, data can be dumped to it at
any time during a run. PRASE can be set up tc save all data in memory
until a process is ready to terminate; dump data after every record that is
collected; or dump data periodically throughout a run.

This does several things for a user. First, if time is an issue, data can
be saved in memory. If time is not that critical, great amounts of data can
be collected by dumping periodically. This also means that the user does
not have to give up a lot of space on a node for gathered data. Instead, the
data can be dumped often so that space is taken up on disk as opposed to in
main memory. If a process is terminating abnormally, PRASE can be set
to dump after every record to aid in debugging.

05

310 Host Hypercube

L----------------0

00

00

00

00

Data Files

Figure 2: Data Collection using a Background Process

0 6

0

3 Preprocessing

With ease of use as a goal, it was decided early that preprocessors were
important. The preprocessors require no interictive input. Instead, the user
communicates with the programs through a configuration file that contains
the needed information. The same configuration file used in the preprocessing
step is also used for translation.

The configuration file normally provides five pieces of information to the
system. Information is provided to tell the system which nodes will be used
in a particular application. Process id's (pids) are also given in this file. A
collection start time can be provided to PRASE. This is a relative time (from
the beginning of a run) that determines when data collection will begin. The
configuration file also includes a list of the Hypercube calls for which the user
would like to gather data. For example, if a user wants to examine send and
receive message services, the appropriate information must be included in
this file. Finally, the names of all code files to preprocess must be included.

4 Seecube Compatibility

A translator has been implemented to take the PRASE data and convert it
to a Seecube format. This converted data can then be used by the Seecube
system so that its graphical display capabilities can be utilized.

Data collected pertaining to items other than send, sendw, recv, recvw,
cclose, and copen is discarded. The translator is responsible for determin-
ing the message cross-referencing information required by Seecube. It will
correlate send records to receive records.

It should be noted that PRASE handles the send without wait service
differently than Seecube. PRASE collects a start time for send and, once
the call to the actual send routine completes, records an end time. The send
service, however, does not guarantee that the message buffer is free when it
returns control to the caller. The PRASE end time reflects the end time
of the call, not the time a buffer was freed. Seecube assumes this end time
to be the time a buffer was free. Therefore, as a user reviews the Seecube
displays, he should interpret them in light of the way PRASE has collected
the data.

07

5 Summary
We have provided the user a set of tools that allow him to instrument his
code. Implementing preprocessors, has been the first step in making the
system easy to use. Maintaining compatibility with Seecube has provided the
graphical capability currently lacking in PRASE. Hopefully, with this group
of software, a user will be able to gain some insight into the workings of his
code. The ability for the user to add application-dependent instrumentation
allows for a flexible instrumentation system.

6 Possible Future Work

The acronym PRASE stands for Parallel Resource Analysis Software Envi-
ronment. Although not yet a true software environment, we would like to
see it move in that direction. A user interface tool that guides a PRASE
'session' from start to finish is envisioned.

Several enhancements are needed to the current software. At this time,
the Fortran preprocessor does not totally support Fortran. The C preproces-
sor requires the user to add a special comment. Both preprocessors shall be
extended to provide total transparency to the user. The data collection rou-
tines and translator also require enhancements to ease current restrictions
placed on the user. In addition, we would like to explore other graphical
display techniques, specifically three dimensional displays that make use of
depth queues in displaying results.

7 Acknowledgements

We would like to thank Alva Couch and Tufts University for their willing
support.

8

References

[11 Couch, Alva L. and others. An Interactive System for Analysis of Hy-
percube Message Passing Performance. Technical Report, Department
of Computer Science, Tufts University, Medford, MA, 1986.

[21 Couch, Alva L. Seecube User's Manual. Department of Computer Sci-
ence, Tufts University, Medford, MA, 24 November 1987.

9

Appendix J. Volume II Pointer for Code

The code has not been incorporated into this document. It has been placed

in Volume II. This appendix is being used as a pointer to where the code may be

found. For information pertaining to the code associated with this thesis, contact:

Dr. Thomas C. Hartrum

Dept. of Electrical & Computer Engineering

Air Force Institute of Technology

AFIT/ENG

Wright-Patterson AFB, OH 45433-6583

J-1

0
Bibliography

1. Bailor, Capt Paul. Student. Personal Interview. Air Force Institute of Technol-
ogy. 1988.

2. Couch, Alva L. and others. An Interactive System for Analysis of Hypercube
Message Passing Performance. Technical Report, Department of Computer Sci-
ence, Tufts University, Medford, MA, 1986.

3. Couch, Alva L. Seecube User's Manual Department of Computer Science, Tufts
University, Medford, MA, 24 November 1987.

4. Couch, Alva L. Graphical Representations of Program Performance on Hyper-
cube Message-Passing Multiprocessors. Technical Report 88-4. Department of
Computer Science, Tufts University, Medford, MA, April 1988.

5. Donlan, Capt Brian. Instructor. Personal Interview. Air Force Institute of Tech-
nology. 1988.

6. Ferrari, Domenico and others. Measurement and Tuning of Computer Systems.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1983.

7. Hearn, Donald and M. Pauline Baker. Computer Graphics. Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1986.

8. Hodges, Capt Bill. Instructor. Personal Interview. Air Force Institute of Tech-
nology. 1988.

9. Kerola, Teemu and Herb Schwetman. Monit: A Performance Monitoring Tool
for Parallel and Pseudo-Parallel Programs. Performance Evaluation Review -
Proceedings of the 1987 ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems 15: No. 1 (Special Issue) 163-174. (May 1987)
(Conference was held at Banff, Alberta, Canada, May 11-14, 1987)

10. Meyers, Glenford J. The Art of Software Testing. New York: John Wiley &
Sons, 1979.

11. Norris, Richard. Personal Interview. Systems Analyst. System Research Lab,
Dayton OH, 1988.

12. Rowe, Capt Janice F. A Network Monitoring Facility for a Distributed Data
Base Management System. MS thesis, AFIT/GCS/EE/85D-14. School of En-
gineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1985.

13. Tufte, Edward R. The Visual Display of Quantitative Information. Cheshire
Connecticut: Graphics Press, 1983. (Fourth printing in January 1985)

BIB-1

Vita

Captain Mark A. Kahl

ettended Palomar Junior College until entering

the USAF in April 1976. He served as a Communications Center Specialist until

he began attending California State University at Sacramento through the Airmans

Education and Commissioning Program in 1981. He received the degree of Bachelor

of Science in Computer Science in December 1983. He subsequently attended Officer

Training School, graduating in April of 1984. He served as a Computer Analyst Com-

munications Software Engineer at the Cheyenne Mountain Complex Colorado from

May 1984 until entering the School of Engineering, Air Force Institute of Technology

in May 1987.

VITA-I

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE OM No pro0ed

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
,,_ _ _,_ _distribution unlimited,

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/88D-1l

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

School of Engineering AFIT/ENG

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology

WPAFB, OH 45433-6583

8a. NAME OF FUNDING/SPONSORING |8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

STRAfTGIC DEFFNSE INITIATIVEOI. S/PI

1c ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

The Pentagon PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. I NO. NO. ACCESSION NO.Washington DC 20301-7100 II

11. TITLE (Include Security Classification)

PRASE: INSTRUEI"NTATION SOFTWARE FOR T1lE INTEL IPSC HIYPERCJBE

12. PERSONAL AUTHOR(S)

Mark Albert Nahl, Capt, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

MS Thesis I FROM TO I 1988 Deceiber 210

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Parallel Processing, Monitors, Instrmwentation

12 05

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman: Dr. Tiomas C. Ilartrum
Associate Professor of Electrical and Carputer Engineering

DISTRIBUTION /AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED
NAME OF RESPONSIBLE INDIVIDUAL, TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

nxxms C.]lartrmn, Associate Professor (513) 255-2024 AFIT/C

DO Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNC l lISIFIED

JBSTRACT:

PRASE (Parallel Resource Analysis Software Environment), developed
at the Air Force Institute of Technology to support local users, consists
of a set of subroutines and programs that aid a user in noiiitoriiig par-
allel proccssinig software targeted for an Intel iPSC llypercube. PRASE
was in many ways patterned after Seccube, an effort by Alva Couch and
others at Tufts University in Massachusetts. Like Seecube, instrumen-
tation code must be embedded in a user's source code to facilitate data
collection. After data has been collected, a translator may be used to
tranislate P11 iSE data into Seecubc format .Onice tranlatedl, existing
Sectibe software call be utilizedl to p~rod u:c ' everal kinds of graphlical
displays on a Sun workstation.

Seecube, however, is not-requir'd to be able to use PRASE. PIRASE
allows a user to gather data on several proccsses pcr node and gives
i us c apthcaability to collect information on variables specific to his
l)rogra~il rI his allows a.pplication-sl)ecific instrumentation. Prcproces-
sors for both C and Fortrau automatically embed necessary subroutine
calls using a user defined configuration file. The data collection subrou-
tines are written in C and can be called by both C and Fortran. Data
collected during i)rograiIu execution can be held in llyp)ercube iiemory
amd written to disk at the end of a Iui, or dumped periodically to disk
during a run which may aid in debugging. The resulting data files can
then be translated to Seccube format or Isd as input to other data.
analysis and display programs. The two p processors, as well as the
translator were implemented in Ada. (

I,0

